Maurice A. de Gosson

Last updated

Maurice de Gosson
Picture of Maurice and Charlyne de Gosson.png
Maurice and Charlyne de Gosson
Born (1948-03-13) 13 March 1948 (age 75)
Alma mater University of Nice
University of Paris 6
Known forApplications of the principle of the symplectic camel to physics
SpouseCharlyne de Gosson
Scientific career
Fields Harmonic analysis, Symplectic geometry,
Quantum mechanics

Maurice A. de Gosson (born 13 March 1948), (also known as Maurice Alexis de Gosson de Varennes) is an Austrian mathematician and mathematical physicist, born in 1948 in Berlin. [1] He is currently a Senior Researcher at the Numerical Harmonic Analysis Group (NuHAG) [2] of the University of Vienna. [3]

Contents

Work

After completing his PhD in microlocal analysis at the University of Nice in 1978 under the supervision of Jacques Chazarain, de Gosson soon became fascinated by Jean Leray's Lagrangian analysis. Under Leray's tutorship de Gosson completed a Habilitation à Diriger des Recherches en Mathématiques at the University of Paris 6 (1992). During this period he specialized in the study of the Leray–Maslov index and in the theory of the metaplectic group, and their applications to mathematical physics. In 1998 de Gosson met Basil Hiley, who triggered his interest in conceptual question in quantum mechanics. Basil Hiley wrote a foreword to de Gosson's book The Principles of Newtonian and Quantum Mechanics (Imperial College Press, London). After having spent several years in Sweden as Associate Professor and Professor in Sweden, de Gosson was appointed in 2006 at the Numerical Harmonic Analysis Group of the University of Vienna, created by Hans Georg Feichtinger (see www.nuhag.eu). He currently works in symplectic methods in harmonic analysis, and on conceptual questions in quantum mechanics, often in collaboration with Basil Hiley. [4] [5]

Visiting positions

Maurice de Gosson has held longer visiting positions at Yale University, [6] [7] University of Colorado in Boulder (Ulam Visiting Professor) , [8] University of Potsdam, Albert-Einstein-Institut (Golm), Max-Planck-Institut für Mathematik (Bonn), Université Paul Sabatier (Toulouse), Jacobs Universität (Bremen)

The symplectic camel

Maurice de Gosson was the first to prove that Mikhail Gromov's symplectic non-squeezing theorem (also called the Principle of "the Symplectic Camel") allowed the derivation of a classical uncertainty principle formally totally similar to the Robertson–Schrödinger uncertainty relations (i.e. the Heisenberg inequalities in a stronger form where the covariances are taken into account). [9] This rather unexpected result was discussed in the media. [10]

Quantum blobs

In 2003, Gosson introduced the notion of quantum blobs, which are defined in terms of symplectic capacities and are invariant under canonical transformations. [11] Shortly after, [12] he showed that Gromov's non-squeezing theorem allows a coarse graining of phase space by such quantum blobs (or symplectic quantum cells), each described by a mean momentum and a mean position:

The quantum blob is the image of a phase space ball with radius by a (linear) symplectic transformation. [13]

and

"Quantum blobs are the smallest phase space units of phase space compatible with the uncertainty principle of quantum mechanics and having the symplectic group as group of symmetries. Quantum blobs are in a bijective correspondence with the squeezed coherent states from standard quantum mechanics, of which they are a phase space picture." [14]

Their invariance property distinguishes de Gosson's quantum blobs from the "quantum cells" known in thermodynamics, which are units of phase space with a volume of the size of Planck's constant h to the power of 3. [15] [16]

Together with G. Dennis and Basil Hiley, de Gosson laid out examples of how the quantum blob can be seen as a "blow-up" of a particle in phase space. To demonstrate this, they picked up on "Fermi's trick" [17] which allows to identify an arbitrary wavefunction as a stationary state for some Hamiltonian operator. They showed that this blow-up requires internal energy that comes from the particle itself, involving the kinetic energy and David Bohm's quantum potential. [18] [19]

In the classical limit, the quantum blob becomes a point particle. [20]

Influence

De Gosson's notion of quantum blobs has given rise to a proposal for a new formulation of quantum mechanics, which is derived from postulates on quantum-blob-related limits to the extent and localization of quantum particles in phase space; [14] [21] this proposal is strengthened by the development of a phase space approach that applies to both quantum and classical physics, where a quantum-like evolution law for observables can be recovered from the classical Hamiltonian in a non-commutative phase space, where x and p are (non-commutative) c-numbers, not operators. [22]

Publications

Books

Symplectic Geometry and Quantum Mechanics (2006) Symplectic Geometry and Quantum Mechanics.jpg
Symplectic Geometry and Quantum Mechanics (2006)

Selected recent papers

Related Research Articles

In physics, quantisation is the systematic transition procedure from a classical understanding of physical phenomena to a newer understanding known as quantum mechanics. It is a procedure for constructing quantum mechanics from classical mechanics. A generalization involving infinite degrees of freedom is field quantization, as in the "quantization of the electromagnetic field", referring to photons as field "quanta". This procedure is basic to theories of atomic physics, chemistry, particle physics, nuclear physics, condensed matter physics, and quantum optics.

The de Broglie–Bohm theory, also known as the pilot wave theory, Bohmian mechanics, Bohm's interpretation, and the causal interpretation, is an interpretation of quantum mechanics. It postulates that in addition to the wavefunction, an actual configuration of particles exists, even when unobserved. The evolution over time of the configuration of all particles is defined by a guiding equation. The evolution of the wave function over time is given by the Schrödinger equation. The theory is named after Louis de Broglie (1892–1987) and David Bohm (1917–1992).

In mathematical physics, geometric quantization is a mathematical approach to defining a quantum theory corresponding to a given classical theory. It attempts to carry out quantization, for which there is in general no exact recipe, in such a way that certain analogies between the classical theory and the quantum theory remain manifest. For example, the similarity between the Heisenberg equation in the Heisenberg picture of quantum mechanics and the Hamilton equation in classical physics should be built in.

<span class="mw-page-title-main">Asher Peres</span> Israeli physicist

Asher Peres was an Israeli physicist. He is well known for his work relating quantum mechanics and information theory. He helped to develop the Peres–Horodecki criterion for quantum entanglement, as well as the concept of quantum teleportation, and collaborated with others on quantum information and special relativity. He also introduced the Peres metric and researched the Hamilton–Jacobi–Einstein equation in general relativity. With Mario Feingold, he published work in quantum chaos that is known to mathematicians as the Feingold–Peres conjecture and to physicists as the Feingold–Peres theory.

In physics, complementarity is a conceptual aspect of quantum mechanics that Niels Bohr regarded as an essential feature of the theory. The complementarity principle holds that objects have certain pairs of complementary properties which cannot all be observed or measured simultaneously, for examples, position and momentum or wave and particle properties. In contemporary terms, complementarity encompasses both the uncertainty principle and wave-particle duality.

<span class="mw-page-title-main">Mário Schenberg</span> Brazilian electrical engineer, physicist, art critic and writer

Mário Schenberg was a Brazilian electrical engineer, physicist, art critic and writer.

In mathematical physics, Gleason's theorem shows that the rule one uses to calculate probabilities in quantum physics, the Born rule, can be derived from the usual mathematical representation of measurements in quantum physics together with the assumption of non-contextuality. Andrew M. Gleason first proved the theorem in 1957, answering a question posed by George W. Mackey, an accomplishment that was historically significant for the role it played in showing that wide classes of hidden-variable theories are inconsistent with quantum physics. Multiple variations have been proven in the years since. Gleason's theorem is of particular importance for the field of quantum logic and its attempt to find a minimal set of mathematical axioms for quantum theory.

The quantum potential or quantum potentiality is a central concept of the de Broglie–Bohm formulation of quantum mechanics, introduced by David Bohm in 1952.

In mathematical physics, de Sitter invariant special relativity is the speculative idea that the fundamental symmetry group of spacetime is the indefinite orthogonal group SO(4,1), that of de Sitter space. In the standard theory of general relativity, de Sitter space is a highly symmetrical special vacuum solution, which requires a cosmological constant or the stress–energy of a constant scalar field to sustain.

The non-squeezing theorem, also called Gromov's non-squeezing theorem, is one of the most important theorems in symplectic geometry. It was first proven in 1985 by Mikhail Gromov. The theorem states that one cannot embed a ball into a cylinder via a symplectic map unless the radius of the ball is less than or equal to the radius of the cylinder. The theorem is important because formerly very little was known about the geometry behind symplectic maps.

Basil J. Hiley, is a British quantum physicist and professor emeritus of the University of London.

The phase-space formulation of quantum mechanics places the position and momentum variables on equal footing in phase space. In contrast, the Schrödinger picture uses the position or momentum representations. The two key features of the phase-space formulation are that the quantum state is described by a quasiprobability distribution and operator multiplication is replaced by a star product.

In physics, Born reciprocity, also called reciprocal relativity or Born–Green reciprocity, is a principle set up by theoretical physicist Max Born that calls for a duality-symmetry among space and momentum. Born and his co-workers expanded his principle to a framework that is also known as reciprocity theory.

The Koopman–von Neumann (KvN) theory is a description of classical mechanics as an operatorial theory similar to quantum mechanics, based on a Hilbert space of complex, square-integrable wavefunctions. As its name suggests, the KvN theory is loosely related to work by Bernard Koopman and John von Neumann in 1931 and 1932, respectively. As explained in this entry, however, the historical origins of the theory and its name are complicated.

<span class="mw-page-title-main">Rainbow gravity theory</span> Physics theory

Rainbow gravity is a theory that different wavelengths of light experience different gravity levels and are separated in the same way that a prism splits white light into the rainbow. This phenomenon would be imperceptible in areas of relatively low gravity, such as Earth, but would be significant in areas of extremely high gravity, such as a black hole. As such the theory claims to disprove that the universe has a beginning or Big Bang, as the big bang theory calls for all wavelengths of light to be impacted by gravity to the same extent. The theory was first proposed in 2003 by physicists Lee Smolin and João Magueijo, and claims to bridge the gap between general relativity and quantum mechanics. Scientists are currently attempting to detect rainbow gravity using the Large Hadron Collider.

Continuous-variable (CV) quantum information is the area of quantum information science that makes use of physical observables, like the strength of an electromagnetic field, whose numerical values belong to continuous intervals. One primary application is quantum computing. In a sense, continuous-variable quantum computation is "analog", while quantum computation using qubits is "digital." In more technical terms, the former makes use of Hilbert spaces that are infinite-dimensional, while the Hilbert spaces for systems comprising collections of qubits are finite-dimensional. One motivation for studying continuous-variable quantum computation is to understand what resources are necessary to make quantum computers more powerful than classical ones.

Phase-space representation of quantum state vectors is a formulation of quantum mechanics elaborating the phase-space formulation with a Hilbert space. It "is obtained within the framework of the relative-state formulation. For this purpose, the Hilbert space of a quantum system is enlarged by introducing an auxiliary quantum system. Relative-position state and relative-momentum state are defined in the extended Hilbert space of the composite quantum system and expressions of basic operators such as canonical position and momentum operators, acting on these states, are obtained." Thus, it is possible to assign a meaning to the wave function in phase space, , as a quasiamplitude, associated to a quasiprobability distribution.

In mathematical physics and harmonic analysis, the quadratic Fourier transform is an integral transform that generalizes the fractional Fourier transform, which in turn generalizes the Fourier transform.

<span class="mw-page-title-main">Giovanni Felder</span> Swiss physicist and mathematician

Giovanni Felder is a Swiss mathematical physicist and mathematician, working at ETH Zurich. He specializes in algebraic and geometric properties of integrable models of statistical mechanics and quantum field theory.

<span class="mw-page-title-main">Alberto Cattaneo</span> Italian mathematician and physicist (born 1967)

Alberto Sergio Cattaneo is an Italian mathematician and mathematical physicist, specializing in geometry related to quantum field theory and string theory.

References

  1. Biography at the NuHAG website – University of Vienna, ()
  2. Numerical Harmonic Analysis Group website, University of Vienna ()
  3. Homepage at the NuHAG website – University of Vienna, ()
  4. University website, short biography – 2011 ()
  5. University website, Research section()
  6. AMS.org - Mathematics Calendar()
  7. Gosson, Maurice de (1998). "The quantum motion of half-densities and the derivation of Schrödinger's equation". Journal of Physics A: Mathematical and General. 31 (18): 4239–4247. Bibcode:1998JPhA...31.4239D. doi:10.1088/0305-4470/31/18/013.
  8. AMS.org - Mathematics Calendar()
  9. Reich, New Scientist – (), 2009
  10. Samuel Reich, Eugenie (26 February 2009). "How camels could explain quantum uncertainty". New Scientist. Retrieved 18 December 2013.
  11. de Gosson, Maurice A (2003). "Phase space quantization and the uncertainty principle". Physics Letters A. 317 (5–6): 365–369. Bibcode:2003PhLA..317..365D. doi:10.1016/j.physleta.2003.09.008. ISSN   0375-9601.
  12. M. de Gosson (2004), Phys. Lett. A, vol. 330, pp. 161 ff., and M. de Gosson (2005), Bull. Sci. Math., vol. 129, pp. 211, both cited according to M. de Gosson (2005), Symplectically covariant Schrödinger equation in phase space, Journal of Physics A, Mathematics and General, vol. 38, pp. 9263-9287 (2005)
  13. Maurice de Gosson (2004). "On the goodness of "quantum blobs" in phase space quantization". arXiv: quant-ph/0407129 .
  14. 1 2 De Gosson, Maurice A. (2013). "Quantum Blobs". Foundations of Physics. 43 (4): 440–457. arXiv: 1106.5468 . Bibcode:2013FoPh...43..440D. doi:10.1007/s10701-012-9636-x. PMC   4267529 . PMID   25530623.
  15. The symplectic camel: the tip of an iceberg?, website of Maurice A. de Gosson, downloaded October 5, 2012
  16. M. A. de Gosson: The Principles of Newtonian & Quantum Mechanics: The Need for Planck's Constant, h, Imperial College Press, 2001, ISBN   978-1860942747, p. 120
  17. de Gosson, Maurice A. (2012). "A Geometric Picture of the Wave Function: Fermi's Trick". arXiv: 1208.0908 [quant-ph].
  18. Dennis, Glen; de Gosson, Maurice A.; Hiley, Basil J. (2014). "Fermi's ansatz and Bohm's quantum potential". Physics Letters A. 378 (32–33): 2363–2366. Bibcode:2014PhLA..378.2363D. doi:10.1016/j.physleta.2014.05.020. ISSN   0375-9601.
  19. Dennis, Glen; De Gosson, Maurice A.; Hiley, Basil J. (2015). "Bohm's quantum potential as an internal energy". Physics Letters A. 379 (18–19): 1224–1227. arXiv: 1412.5133 . Bibcode:2015PhLA..379.1224D. doi:10.1016/j.physleta.2015.02.038. S2CID   118575562.
  20. See for example: B. J. Hiley: Foundations of Quantum Theory in the Light of Bohmian Non-commutative Dynamics, The Finnish Society for Natural Philosophy 25 Years K.V. Laurikainen Honorary Symposium 2013 / 2 April 2014
  21. Dragoman, D. (2005). "Phase Space Formulation of Quantum Mechanics. Insight into the Measurement Problem". Physica Scripta. 72 (4): 290–296. arXiv: quant-ph/0402021 . Bibcode:2005PhyS...72..290D. doi:10.1238/Physica.Regular.072a00290. S2CID   404487.
  22. D. Dragoman: Quantum-like classical mechanics in non-commutative phase space, Proceedings of the Romanian Academy, Series A, vol. 12, no. 2/2011, pp. 95–99 (full text)
  23. 1 2 Springer, ()
  24. Journal de Mathématiques Pures et Appliquées Volume 96, Issue 5, ()
  25. J. Pseudo-Differ. Oper. Appl. 2 (2011), no. 1, ()
  26. Phys. Rep. 484 (2009), no. 5, ()
  27. Found. Phys. 39 (2009), no. 2, ()
  28. J. Math. Pures Appl. (9) 91(2009), no. 6, ()