Medea hypothesis

Last updated

The Medea hypothesis is a term coined by paleontologist Peter Ward [1] for a hypothesis that contests the Gaian hypothesis and proposes that multicellular life, understood as a superorganism, may be self-destructive or suicidal. The metaphor refers to the mythological Medea (representing the Earth), who kills her own children (multicellular life).

Contents

In this view, microbial-triggered mass extinctions result in returns to the microbial-dominated state it has been for most of its history. [2] [3] [4]

Examples

Possible examples of extinction events induced entirely or partially by biotic activities include:

The list excludes the Cretaceous–Paleogene extinction event, since this was, at least partially, externally induced by a meteor impact.

Current status and future extinctions

Peter Ward proposes that the current man-made climate change and mass extinction event may be considered to be the most recent Medean event. As these events are anthropogenic, he postulates that Medean events are not necessarily caused by microbes, but by intelligent life as well and that the final mass extinction of complex life, roughly about 500–900 million years in the future, can also be considered a Medean event: "Plant life that still exists then will be forced to adapt to a warming and expanding Sun, causing them to remove even more carbon dioxide from the atmosphere (which in turn will have already been lowered due to the increasing heat from the Sun gradually speeding up the weathering process that removes these molecules from the atmosphere), and ultimately accelerating the complete extinction of complex life by making carbon dioxide levels drop down to just 10  ppm, below which plants can no longer survive." However, Ward simultaneously argues that intelligent life such as humans may not necessarily just trigger future Medean events, but may eventually prevent them from occurring.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Extinction event</span> Widespread and rapid decrease in the biodiversity on Earth

An extinction event is a widespread and rapid decrease in the biodiversity on Earth. Such an event is identified by a sharp fall in the diversity and abundance of multicellular organisms. It occurs when the rate of extinction increases with respect to the background extinction rate and the rate of speciation. Estimates of the number of major mass extinctions in the last 540 million years range from as few as five to more than twenty. These differences stem from disagreement as to what constitutes a "major" extinction event, and the data chosen to measure past diversity.

The timeline of the evolutionary history of life represents the current scientific theory outlining the major events during the development of life on planet Earth. Dates in this article are consensus estimates based on scientific evidence, mainly fossils.

The PaleozoicEra is the first of three geological eras of the Phanerozoic Eon. Beginning 538.8 million years ago (Ma), it succeeds the Neoproterozoic and ends 251.9 Ma at the start of the Mesozoic Era. The Paleozoic is subdivided into six geologic periods :

The Phanerozoic is the current and the latest of the four geologic eons in the Earth's geologic time scale, covering the time period from 538.8 million years ago to the present. It is the eon during which abundant animal and plant life has proliferated, diversified and colonized various niches on the Earth's surface, beginning with the Cambrian period when animals first developed hard shells that can be clearly preserved in the fossil record. The time before the Phanerozoic, collectively called the Precambrian, is now divided into the Hadean, Archaean and Proterozoic eons.

<span class="mw-page-title-main">Snowball Earth</span> Worldwide glaciation episodes during the Proterozoic eon

The Snowball Earth is a geohistorical hypothesis that proposes during one or more of Earth's icehouse climates, the planet's surface became entirely or nearly entirely frozen with no liquid oceanic or surface water exposed to the atmosphere. The most academically referred period of such global glaciation is believed to have occurred sometime before 650 mya during the Cryogenian period.

<span class="mw-page-title-main">Triassic–Jurassic extinction event</span> Mass extinction ending the Triassic period

The Triassic–Jurassic (Tr-J) extinction event (TJME), often called the end-Triassic extinction, was a Mesozoic extinction event that marks the boundary between the Triassic and Jurassic periods, 201.4 million years ago, and is one of the top five major extinction events of the Phanerozoic eon, profoundly affecting life on land and in the oceans. In the seas, the entire class of conodonts and 23–34% of marine genera disappeared. On land, all archosauromorphs other than crocodylomorphs, pterosaurs, and dinosaurs became extinct; some of the groups which died out were previously abundant, such as aetosaurs, phytosaurs, and rauisuchids. Some remaining non-mammalian therapsids and many of the large temnospondyl amphibians had become extinct prior to the Jurassic as well. However, there is still much uncertainty regarding a connection between the Tr-J boundary and terrestrial vertebrates, due to a lack of terrestrial fossils from the Rhaetian (latest) stage of the Triassic. What was left fairly untouched were plants, crocodylomorphs, dinosaurs, pterosaurs and mammals; this allowed the dinosaurs, pterosaurs, and crocodylomorphs to become the dominant land animals for the next 135 million years.

<span class="mw-page-title-main">Paleoclimatology</span> Study of changes in ancient climate

Paleoclimatology is the scientific study of climates predating the invention of meteorological instruments, when no direct measurement data were available. As instrumental records only span a tiny part of Earth's history, the reconstruction of ancient climate is important to understand natural variation and the evolution of the current climate.

<span class="mw-page-title-main">Gaia hypothesis</span> Paradigm that living organisms interact with their surroundings in a self-regulating system

The Gaia hypothesis, also known as the Gaia theory, Gaia paradigm, or the Gaia principle, proposes that living organisms interact with their inorganic surroundings on Earth to form a synergistic and self-regulating, complex system that helps to maintain and perpetuate the conditions for life on the planet.

<span class="mw-page-title-main">Late Ordovician mass extinction</span> Extinction event around 444 million years ago

The Late Ordovician mass extinction (LOME), sometimes known as the end-Ordovician mass extinction or the Ordovician-Silurian extinction, is the first of the "big five" major mass extinction events in Earth's history, occurring roughly 445 million years ago (Ma). It is often considered to be the second-largest known extinction event, in terms of the percentage of genera that became extinct. Extinction was global during this interval, eliminating 49–60% of marine genera and nearly 85% of marine species. Under most tabulations, only the Permian-Triassic mass extinction exceeds the Late Ordovician mass extinction in biodiversity loss. The extinction event abruptly affected all major taxonomic groups and caused the disappearance of one third of all brachiopod and bryozoan families, as well as numerous groups of conodonts, trilobites, echinoderms, corals, bivalves, and graptolites. Despite its taxonomic severity, the Late Ordovician mass extinction did not produce major changes to ecosystem structures compared to other mass extinctions, nor did it lead to any particular morphological innovations. Diversity gradually recovered to pre-extinction levels over the first 5 million years of the Silurian period.

The geologic temperature record are changes in Earth's environment as determined from geologic evidence on multi-million to billion (109) year time scales. The study of past temperatures provides an important paleoenvironmental insight because it is a component of the climate and oceanography of the time.

Oceanic anoxic events or anoxic events (anoxia conditions) describe periods wherein large expanses of Earth's oceans were depleted of dissolved oxygen (O2), creating toxic, euxinic (anoxic and sulfidic) waters. Although anoxic events have not happened for millions of years, the geologic record shows that they happened many times in the past. Anoxic events coincided with several mass extinctions and may have contributed to them. These mass extinctions include some that geobiologists use as time markers in biostratigraphic dating. On the other hand, there are widespread, various black-shale beds from the mid-Cretaceous which indicate anoxic events but are not associated with mass extinctions. Many geologists believe oceanic anoxic events are strongly linked to the slowing of ocean circulation, climatic warming, and elevated levels of greenhouse gases. Researchers have proposed enhanced volcanism (the release of CO2) as the "central external trigger for euxinia."

<span class="mw-page-title-main">History of Earth</span> Development of planet Earth from its formation to the present day

The history of Earth concerns the development of planet Earth from its formation to the present day. Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

The Huronian glaciation was a period where at least 3 ice ages occurred during the deposition of Huronian Supergroup. Deposition of this largely sedimentary succession extended from approximately 2.5 to 2.2 billion years ago (Gya), during the Siderian and Rhyacian periods of the Paleoproterozoic era. Evidence for glaciation is mainly based on the recognition of diamictite, that is interpreted to be of glacial origin. Deposition of the Huronian succession is interpreted to have occurred within a rift basin that evolved into a largely marine passive margin setting. The glacial diamictite deposits within the Huronian are on par in thickness with Quaternary analogs.

The Andean-Saharan glaciation, also known as the Early Paleozoic Ice Age (EPIA), the Early Paleozoic Icehouse, the Late Ordovician glaciation, the end-Ordovician glaciation, or the Hirnantian glaciation, occurred during the Paleozoic from approximately 460 Ma to around 420 Ma, during the Late Ordovician and the Silurian period. The major glaciation during this period was formerly thought only to consist of the Hirnantian glaciation itself but has now been recognized as a longer, more gradual event, which began as early as the Darriwilian, and possibly even the Floian. Evidence of this glaciation can be seen in places such as Arabia, North Africa, South Africa, Brazil, Peru, Bolivia, Chile, Argentina, and Wyoming. More evidence derived from isotopic data is that during the Late Ordovician, tropical ocean temperatures were about 5 °C cooler than present day; this would have been a major factor that aided in the glaciation process.

<span class="mw-page-title-main">Great Oxidation Event</span> Paleoproterozoic surge in atmospheric oxygen

The Great Oxidation Event (GOE) or Great Oxygenation Event, also called the Oxygen Catastrophe, Oxygen Revolution, Oxygen Crisis or Oxygen Holocaust, was a time interval during the Early Earth's Paleoproterozoic era when the Earth's atmosphere and the shallow ocean first experienced a rise in the concentration of oxygen. This began approximately 2.460–2.426 Ga (billion years) ago during the Siderian period and ended approximately 2.060 Ga ago during the Rhyacian. Geological, isotopic, and chemical evidence suggests that biologically produced molecular oxygen (dioxygen or O2) started to accumulate in Earth's atmosphere and changed it from a weakly reducing atmosphere practically devoid of oxygen into an oxidizing one containing abundant free oxygen, with oxygen levels being as high as 10% of their present atmospheric level by the end of the GOE.

<span class="mw-page-title-main">Clathrate gun hypothesis</span> Meteorological hypothesis

The clathrate gun hypothesis is a proposed explanation for the periods of rapid warming during the Quaternary. The hypothesis is that changes in fluxes in upper intermediate waters in the ocean caused temperature fluctuations that alternately accumulated and occasionally released methane clathrate on upper continental slopes. This would have had an immediate impact on the global temperature, as methane is a much more powerful greenhouse gas than carbon dioxide. Despite its atmospheric lifetime of around 12 years, methane's global warming potential is 72 times greater than that of carbon dioxide over 20 years, and 25 times over 100 years. It is further proposed that these warming events caused the Bond Cycles and individual interstadial events, such as the Dansgaard–Oeschger interstadials.

The Lau event was the last of three relatively minor mass extinctions during the Silurian period. It had a major effect on the conodont fauna, but barely scathed the graptolites, though they suffered an extinction very shortly thereafter termed the Kozlowskii event that some authors have suggested was coeval with the Lau event and only appears asynchronous due to taphonomic reasons. It coincided with a global low point in sea level caused by glacioeustasy and is closely followed by an excursion in geochemical isotopes in the ensuing late Ludfordian faunal stage and a change in depositional regime.

Throughout Earth's climate history (Paleoclimate) its climate has fluctuated between two primary states: greenhouse and icehouse Earth. Both climate states last for millions of years and should not be confused with glacial and interglacial periods, which occur as alternate phases within an icehouse period and tend to last less than 1 million years. There are five known Icehouse periods in Earth's climate history, which are known as the Huronian, Cryogenian, Andean-Saharan, Late Paleozoic, and Late Cenozoic glaciations. The main factors involved in changes of the paleoclimate are believed to be the concentration of atmospheric carbon dioxide, changes in Earth's orbit, long-term changes in the solar constant, and oceanic and orogenic changes from tectonic plate dynamics. Greenhouse and icehouse periods have played key roles in the evolution of life on Earth by directly and indirectly forcing biotic adaptation and turnover at various spatial scales across time.

<span class="mw-page-title-main">Future of Earth</span> Long-term extrapolated geological and biological changes of planet Earth

The biological and geological future of Earth can be extrapolated based on the estimated effects of several long-term influences. These include the chemistry at Earth's surface, the cooling rate of the planet's interior, the gravitational interactions with other objects in the Solar System, and a steady increase in the Sun's luminosity. An uncertain factor is the pervasive influence of technology introduced by humans, such as climate engineering, which could cause significant changes to the planet. For example, the current Holocene extinction is being caused by technology, and the effects may last for up to five million years. In turn, technology may result in the extinction of humanity, leaving the planet to gradually return to a slower evolutionary pace resulting solely from long-term natural processes.

Euxinia or euxinic conditions occur when water is both anoxic and sulfidic. This means that there is no oxygen (O2) and a raised level of free hydrogen sulfide (H2S). Euxinic bodies of water are frequently strongly stratified; have an oxic, highly productive, thin surface layer; and have anoxic, sulfidic bottom water. The word "euxinia" is derived from the Greek name for the Black Sea (Εὔξεινος Πόντος (Euxeinos Pontos)) which translates to "hospitable sea". Euxinic deep water is a key component of the Canfield ocean, a model of oceans during part of the Proterozoic eon (a part specifically known as the Boring Billion) proposed by Donald Canfield, an American geologist, in 1998. There is still debate within the scientific community on both the duration and frequency of euxinic conditions in the ancient oceans. Euxinia is relatively rare in modern bodies of water, but does still happen in places like the Black Sea and certain fjords.

References

  1. Ward, Peter (2009). The Medea Hypothesis: Is life on Earth ultimately self-destructive?. Princeton University Press. ISBN   978-0-691-13075-0.
  2. "Gaia's evil twin: Is life its own worst enemy?". The New Scientist (cover story). Vol. 202, no. 2713. 17 June 2009. pp. 28–31.
  3. Bennett, Drake (11 January 2009). "Dark green: A scientist argues that the natural world isn't benevolent and sustaining: It's bent on self-destruction". The Boston Globe . Retrieved 26 February 2010.
  4. Grey, William (February 2010). "Gaia theory – reflections on life on Earth". Australian Review of Public Affairs. University of Sydney . Retrieved 26 February 2010.
  5. Hodgskiss, Malcolm S. W.; Crockford, Peter W.; Peng, Yongbo; Wing, Boswell A.; Horner, Tristan J. (27 August 2019). "A productivity collapse to end Earth's Great Oxidation". PNAS. 116 (35): 17207–17212. Bibcode:2019PNAS..11617207H. doi: 10.1073/pnas.1900325116 . PMC   6717284 . PMID   31405980.
  6. Kopp, Robert (14 June 2005). "The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis". PNAS. 102 (32): 11131–6. Bibcode:2005PNAS..10211131K. doi: 10.1073/pnas.0504878102 . PMC   1183582 . PMID   16061801.
  7. Stern, R.J.; Avigad, D.; Miller, N.R.; Beyth, M. (2006). "Geological Society of Africa Presidential Review: Evidence for the Snowball Earth Hypothesis in the Arabian-Nubian Shield and the East African Orogen". Journal of African Earth Sciences. 44 (1): 1–20. Bibcode:2006JAfES..44....1S. doi:10.1016/j.jafrearsci.2005.10.003.
  8. Rooney, Alan D.; Strauss, Justin V.; Brandon, Alan D.; Macdonald, Francis A. (2015). "A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations". Geology. 43 (5): 459–462. Bibcode:2015Geo....43..459R. doi:10.1130/G36511.1.
  9. Lenton, Timothy M.; Crouch, Michael; Johnson, Martin; Pires, Nuno; Dolan, Liam (1 February 2012). "First plants cooled the Ordovician". Nature Geoscience. 5 (2): 86–89. Bibcode:2012NatGe...5...86L. doi:10.1038/ngeo1390. ISSN   1752-0908 . Retrieved 18 October 2022.
  10. Cao, Changqun; Gordon D. Love; Lindsay E. Hays; Wei Wang; Shuzhong Shen; Roger E. Summons (2009). "Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event". Earth and Planetary Science Letters. 281 (3–4): 188–201. Bibcode:2009E&PSL.281..188C. doi:10.1016/j.epsl.2009.02.012.
  11. Zou, Caineng; Qiu, Zhen; Wei, Hengye; Dong, Dazhong; Lu, Bin (15 December 2018). "Euxinia caused the Late Ordovician extinction: Evidence from pyrite morphology and pyritic sulfur isotopic composition in the Yangtze area, South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 511: 1–11. Bibcode:2018PPP...511....1Z. doi:10.1016/j.palaeo.2017.11.033. ISSN   0031-0182. S2CID   134586047.
  12. Zou, Caineng; Qiu, Zhen; Poulton, Simon W.; Dong, Dazhong; Wang, Hongyan; Chen, Daizhou; Lu, Bin; Shi, Zhensheng; Tao, Huifei (2018). "Ocean euxinia and climate change "double whammy" drove the Late Ordovician mass extinction" (PDF). Geology. 46 (6): 535–538. Bibcode:2018Geo....46..535Z. doi:10.1130/G40121.1. S2CID   135039656.