Medipix

Last updated
Single Medipix 2 assembly mounted and wire-bonded on a carrier board. Medipix 2 assembly.png
Single Medipix 2 assembly mounted and wire-bonded on a carrier board.

Medipix is a family of photon counting and particle tracking pixel detectors developed by an international collaboration, hosted by CERN. [1]

Contents

Design

Principle of photon counting in a single pixel. The radiation generates electron-hole pairs (charge) in the sensor. The charge is collected to the appropriate pixel, amplified and compared with a pre-set comparator level (energy threshold). The counter is increased if the detected pulse is above the energy level. Photon counting in a single pixel.gif
Principle of photon counting in a single pixel. The radiation generates electron-hole pairs (charge) in the sensor. The charge is collected to the appropriate pixel, amplified and compared with a pre-set comparator level (energy threshold). The counter is increased if the detected pulse is above the energy level.

These are hybrid detectors as a semiconductor sensor layer is bonded to a processing electronics layer.

The sensor layer is a semiconductor, such as silicon, GaAs, or CdTe in which the incident radiation makes an electron hole/cloud. The charge is then collected to pixel electrodes and, via bump bonds, conducted to the CMOS electronics layer.

The pixel electronics first amplifies the signal and then compares the signal amplitude with a pre-set discrimination level (an energy threshold). The subsequent signal processing depends on the type of device. A standard Medipix detector increases the counter in the appropriate pixel if the signal is above the discrimination level. The Medipix device also contains an upper discrimination level and hence only signals within a range of amplitude could be accepted (within an energy window).

Timepix devices offer two more modes of operation in addition to the counting. The first one is so called “Time-over-Threshold” mode (Wilkinson type analog-to-digital converter). It is a mode where the counter in each pixel records the number of clocks for which the pulse remains above the discrimination level. This number is proportional to the energy of detected radiation. This mode is useful for particle tracking applications or for direct spectral imaging.

The second mode of the Timepix chip is “Time-of-arrival”, in which pixel counters record time between a trigger and detection of radiation quanta with energy above the discrimination level. This mode of operation finds use in Time of flight (TOF) applications, for instance in neutron imaging.

Every individual hit of radiation is processed by the electronics integrated in each pixel this way, therefore the device could be considered as 65 536 individual counting detectors or even spectrometers. The energy discriminators are adjustable. Therefore, scanning with their level it is possible to measure over frequency-bands of the incoming radiation; thus enabling spectroscopic x-ray imaging.

Medipix-2, Timepix, and Medipix-3 are all 256×256 pixels, each 0.055mm (55μm) square, forming a total area 14.08mm × 14.08mm. Larger area detectors can be created by bump-bonding many chips to larger monolithic sensors. Detectors of sizes from 2x2 to 2x4 chips are commonly used. Even larger, gapless areas could be created using the edgeless sensor technology. Medipix/Timepix chips each have its own sensor. These assemblies are tiled next to each other to create nearly arbitrarily sized detector arrays (the largest build using this technology has 10x10 chips, hence 14x14 cm and 2560x2560 pixels [2] ).

Comparison with existing technologies

Photon counting pixel detectors represent the next generation of radiation imaging detectors. The photon counting technology overcomes limitations of current imaging devices. Comparison of photon counting with existing technologies is in the following table:

Film emulsionsCharge integrating devicesPhoton counting pixel detectors
Operation principleChange of chemical or physical properties after interaction with radiation. Needs special treatment (developing process, scanning, ...).Ionizing radiation creates light and subsequently an electric charge that is collected and integrated in pixels (CCD, CMOS sensors, Flat panels, ...). Ionizing radiation creates charge directly in the sensor. The charge is compared with threshold and counted digitally in pixels.
AdvantagesVery high resolution, low noise, cheap.High spatial resolution. Low price.Good spatial resolution, high read-out speed, no noise, no dark current, unlimited dynamic scale, energy discrimination
DisadvantagesNonlinear response, limited dynamic scale, needs processingDark current, noise, limited dynamic scaleHigh price.

Versions

Medipix-1 was the first device of the Medipix family. It had 64x64 pixels of 170 µm pitch. Pixels contained one comparator (threshold) with 3-bit per-pixel offset adjustment. The minimum threshold was ~5.5 keV. The counter depth was 15-bit. The maximum count rate per pixel was 2 MHz per pixel.

Medipix-2 is the successor of Medipix-1. The pixel pitch was reduced to 55 µm and the pixel array is of 256x256 pixels. Each pixel has two discrimination levels (upper and lower threshold) each adjustable individually in pixels using a 3-bit offset. The maximum count rate is about 100 kHz per pixel (however in pixels with 9x smaller area compared to Medipix-1).

Medipix-2 MXR is an improved version of Medipix-2 device with better temperature stability, pixel counter overflow protection, increased radiation hardness and many other improvements.

Timepix is device conceptually originating from Medipix-2. It adds two more modes to the pixels, in addition to counting of detected signals: Time-over-Threshold (TOT) and Time-of-Arrival (TOA). The detected pulse height is recorded in the pixel counter in the TOT mode. The TOA mode measures time between trigger and arrival of the radiation into each pixel.

Medipix-3 is the latest generation of photon counting devices for X-ray imaging. The pixel pitch remains the same (55 µm) as well as the pixel array size (256x256). It has better energy resolution through real time correction of charge sharing. It also has multiple counters per pixel that can be used in several different modes. This allows for continuous readout and up to eight energy thresholds.

Timepix-3 is a successor of the Timepix chip. One of the biggest distinguishing changes is the approach to the data readout. All previous chips used the frame-based readout, i.e. the whole pixel matrix was read out at once. Timepix-3 has event-based readout where values recorded in pixels are read out immediately after the hit together with coordinates of the hit pixel. The chip therefore generates a continuous stream of data rather than a sequence of frames. The next major difference compared to the previous Timepix chip is the ability to measure the hit amplitude simultaneously with the time of arrival. Other parameters such as energy and timing resolution were also improved compared to the original Timepix chip.

Timepix-4 is the successor of the Timepix-3 chip. It has general stronger specifications for instance its time-of-arrival resolution is 195 ps, 8 times faster than Timepix-3, it also has a larger pixelmatrix of 512x448 pixels and can handle 8 times higher data rates. [3]

Readout electronics

The digital data recorded by Medipix/Timepix devices are transferred to a computer via readout electronics. The readout electronics is also responsible for setup and control of the detector parameters. Several readout systems were developed within the Medipix collaboration

Muros

Muros was one of the first readout systems of Medipix detectors. Muros was developed at Nikhef, Amsterdam, The Netherlands. It was relatively compact readout enabling access to all features of the detector. It allowed maximum frame rate of cca 30 frames/s with a single chip.

USB interface

This electronics was developed at IEAP-CTU, Czech Republic. It provides a lower frame rate compared to Muros, but the electronics was integrated into a box not larger than a pack of cigarettes. Moreover, no special PC hardware card was needed as it was in case of Muros. Therefore, the USB interface become quickly the most used readout within the Medipix collaboration and its partners.

Relaxd

Relaxd is a readout electronics developed at Nikhef. The data is transferred to PC via 1 Gbit/s Ethernet connection. The maximum frame rate is at level of 100 frame/s.

Fitpix

Fitpix is the next generation of the USB interface developed by the group in Prague. The electronics implements the parallel Medipix/Timepix readout and therefore the maximum frame rate reaches 850 frame/s. It supports also the serial readout with frame rate of 100 frames/s.

Minipix

Minipix is a miniaturized integrated chip+readout electronics device developed by ADVACAM s.r.o. in Prague. The whole system has size of a USB flash drive. Several of these devices were used on the International Space Station as radiation monitoring systems. [4]

Spidr3

Spidr3 is powerful readout electronics for the TimePix3 and MediPix3 chip. The readout rate for the MediPix3 is about 12500 frames per second and for the TimePix3 of 120 Million Hits per second. The data are transferred by a powerful 10 GB optical fiber connection. The chip and readout system is developed together with Nikhef and Amsterdam Scientific Instruments.

Excalibur and Merlin systems

Both systems are developed at Diamond Light Source, UK, for Medipix3 readout and applications at synchrotrons. Merlin is available with CdTe sensors from Quantum Detectors who are collaborating on further development with Diamond Light Source.

LAMBDA system

Lambda is a high-speed (2,000 fps) big area (12 chips) readout systems developed at DESY. Lambda is available with high-Z sensor options, such as GaAs (Gallium-Arsenide) and CdTe (Cadmium-Telluride).

MARS

MARS is a gigabit Ethernet readout accommodating up to 6 Medipix 2 or Medipix 3 detectors. The electronics was developed at University of Otago, Christchurch, New Zealand.

Applications

X-ray imaging

X-ray imaging is the primary application field of Medipix detectors. Medipix offers to the X-ray imaging field in particular an advantage in higher dynamic range and energy sensitivity. [5] Examples of X-ray images from selected X-ray imaging application fields are:

Space radiation dosimetry

Timepix-based detectors from the Medipix2 Collaboration have been flown on the International Space Station since 2013, and on the first flight test (EFT-1) of NASA's new Orion Multi-Purpose Crew Vehicle in December 2014. Current plans call for similar devices to be flown as the primary radiation area monitors on the future initial crewed Orion missions.

Other

The detectors may also find applications in astronomy, high energy physics, medical imaging, and X-ray spectroscopy.

History

See also

Related Research Articles

<span class="mw-page-title-main">Charge-coupled device</span> Device for the movement of electrical charge

A charge-coupled device (CCD) is an integrated circuit containing an array of linked, or coupled, capacitors. Under the control of an external circuit, each capacitor can transfer its electric charge to a neighboring capacitor. CCD sensors are a major technology used in digital imaging.

<span class="mw-page-title-main">Geiger counter</span> Instrument used for measuring ionizing radiation

A Geiger counter is an electronic instrument used for detecting and measuring ionizing radiation. It is widely used in applications such as radiation dosimetry, radiological protection, experimental physics and the nuclear industry.

<span class="mw-page-title-main">Photodiode</span> Converts light into current

A photodiode is a semiconductor diode sensitive to photon radiation, such as visible light, infrared or ultraviolet radiation, X-rays and gamma rays. Photodiode is a PN semiconductor material that produces current or voltage Photovoltaics when it absorbs photons Semiconductor Optoelectronics . The physics of electron excitation for photodiodes are similar to Photoconductivity typically implemented as a Photoresistor or as switches in Thyristor#Photothyristors. Photodiodes can be used for detection and measurement applications, or optimized for the generation of electrical power in solar cells. Photodiodes are used in a wide range of applications throughout the electromagnetic spectrum from IR, visible light, UV photocells to gamma ray spectrometers.

<span class="mw-page-title-main">Thermographic camera</span> Imaging device using infrared radiation

A thermographic camera is a device that creates an image using infrared (IR) radiation, similar to a normal camera that forms an image using visible light. Instead of the 400–700 nanometre (nm) range of the visible light camera, infrared cameras are sensitive to wavelengths from about 1,000 nm to about 14,000 nm (14 μm). The practice of capturing and analyzing the data they provide is called thermography.

<span class="mw-page-title-main">Yohkoh</span> Japanese spacecraft

Yohkoh, known before launch as Solar-A, was a Solar observatory spacecraft of the Institute of Space and Astronautical Science (Japan), in collaboration with space agencies in the United States and the United Kingdom. It was launched into Earth orbit on August 30, 1991 by the M-3SII rocket from Kagoshima Space Center. It took its first soft X-ray image on September 13, 1991, 21:53:40, and movie representations of the X-ray corona over 1991-2001 are available at the Yohkoh Legacy site.

<span class="mw-page-title-main">Photodetector</span> Sensors of light or other electromagnetic energy

Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There are a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by various performance metrics, such as spectral response. Semiconductor-based photodetectors typically use a p–n junction that converts photons into charge. The absorbed photons make electron–hole pairs in the depletion region. Photodiodes and photo transistors are a few examples of photo detectors. Solar cells convert some of the light energy absorbed into electrical energy.

A time delay and integration or time delay integration (TDI) charge-coupled device (CCD) is an image sensor for capturing images of moving objects at low light levels. While using similar underlying CCD technology, in operation it contrasts with staring arrays and line scanned arrays. It works by synchronized mechanical and electronical scanning, so that the effects of dim imaging targets on the sensor can be integrated over longer periods of time.

<span class="mw-page-title-main">Image sensor</span> Device that converts images into electronic signals

An image sensor or imager is a sensor that detects and conveys information used to form an image. It does so by converting the variable attenuation of light waves into signals, small bursts of current that convey the information. The waves can be light or other electromagnetic radiation. Image sensors are used in electronic imaging devices of both analog and digital types, which include digital cameras, camera modules, camera phones, optical mouse devices, medical imaging equipment, night vision equipment such as thermal imaging devices, radar, sonar, and others. As technology changes, electronic and digital imaging tends to replace chemical and analog imaging.

Charge sharing is an effect of signal degradation through transfer of charges from one electronic domain to another.

<span class="mw-page-title-main">Active-pixel sensor</span> Image sensor, consisting of an integrated circuit

An active-pixel sensor (APS) is an image sensor, which was invented by Peter J.W. Noble in 1968, where each pixel sensor unit cell has a photodetector and one or more active transistors. In a metal–oxide–semiconductor (MOS) active-pixel sensor, MOS field-effect transistors (MOSFETs) are used as amplifiers. There are different types of APS, including the early NMOS APS and the now much more common complementary MOS (CMOS) APS, also known as the CMOS sensor. CMOS sensors are used in digital camera technologies such as cell phone cameras, web cameras, most modern digital pocket cameras, most digital single-lens reflex cameras (DSLRs), mirrorless interchangeable-lens cameras (MILCs), and lensless imaging for cells.

<span class="mw-page-title-main">PILATUS (detector)</span>

PILATUS is the name of a series of x-ray detectors originally developed by the Paul Scherrer Institute at the Swiss Light Source and further developed and commercialized by DECTRIS. The PILATUS detectors are based on hybrid photon counting (HPC) technology, by which X-rays are converted to electrical signals by the photoelectric effect in a semiconductor sensor layer—either silicon or cadmium telluride—which is subject to a substantial bias voltage. The electric signals are counted directly by a series of cells in an ASIC bonded to the sensor. Each cell—or pixel—is a complete detector in itself, equipped with an amplifier, discriminator and counter circuit. This is possible thanks to contemporary CMOS integrated circuit technology.

<span class="mw-page-title-main">Survey meter</span>

Survey meters in radiation protection are hand-held ionising radiation measurement instruments used to check such as personnel, equipment and the environment for radioactive contamination and ambient radiation. The hand-held survey meter is probably the most familiar radiation measuring device owing to its wide and visible use.

<span class="mw-page-title-main">Transition-edge sensor</span>

A transition-edge sensor (TES) is a type of cryogenic energy sensor or cryogenic particle detector that exploits the strongly temperature-dependent resistance of the superconducting phase transition.

<span class="mw-page-title-main">Flat-panel detector</span> Class of solid-state x-ray digital radiography devices

Flat-panel detectors are a class of solid-state x-ray digital radiography devices similar in principle to the image sensors used in digital photography and video. They are used in both projectional radiography and as an alternative to x-ray image intensifiers (IIs) in fluoroscopy equipment.

An oversampled binary image sensor is an image sensor with non-linear response capabilities reminiscent of traditional photographic film. Each pixel in the sensor has a binary response, giving only a one-bit quantized measurement of the local light intensity. The response function of the image sensor is non-linear and similar to a logarithmic function, which makes the sensor suitable for high dynamic range imaging.

<span class="mw-page-title-main">X-ray detector</span> Instrument that can measure properties of X-rays

X-ray detectors are devices used to measure the flux, spatial distribution, spectrum, and/or other properties of X-rays.

High energy X-ray imaging technology (HEXITEC) is a family of spectroscopic, single photon counting, pixel detectors developed for high energy X-ray and gamma ray spectroscopy applications.

Photon-counting computed tomography (PCCT) is a form of X-ray computed tomography (CT) in which X-rays are detected using a photon-counting detector (PCD) which registers the interactions of individual photons. By keeping track of the deposited energy in each interaction, the detector pixels of a PCD each record an approximate energy spectrum, making it a spectral or energy-resolved CT technique. In contrast, more conventional CT scanners use energy-integrating detectors (EIDs), where the total energy deposited in a pixel during a fixed period of time is registered. These EIDs thus register only photon intensity, comparable to black-and-white photography, whereas PCDs register also spectral information, similar to color photography.

<span class="mw-page-title-main">Oleg Tolbanov</span> Russian physicist

Oleg Petrovich Tolbanov is a Russian physicist, specialist in solid state physics, solid-state electronics and physical materials science. He is the author of more than 160 scientific articles in the Web of Science database, including: monographs, 5 textbooks, more than 60 inventions.

Hybrid pixel detectors are a type of ionizing radiation detector consisting of an array of diodes based on semiconductor technology and their associated electronics. The term “hybrid” stems from the fact that the two main elements from which these devices are built, the semiconductor sensor and the readout chip, are manufactured independently and later electrically coupled by means of a bump-bonding process. Ionizing particles are detected as they produce electron-hole pairs through their interaction with the sensor element, usually made of doped silicon or cadmium telluride. The readout ASIC is segmented into pixels containing the necessary electronics to amplify and measure the electrical signals induced by the incoming particles in the sensor layer.

References

  1. Rosenfeld, Anatoly; Silari, Marco; Campbell, Michael (2020). "The Editorial". Radiation Measurements. 139: 106483. Bibcode:2020RadM..139j6483R. doi: 10.1016/j.radmeas.2020.106483 . ISSN   1350-4487.
  2. Timepix large area 6.5MPix camera
  3. Timepix4, a large area pixel detector readout chip which can be tiled on 4 sides providing sub-200 ps timestamp binning
  4. "ADVACAM cameras".
  5. X-ray.camera