Mesophase

Last updated

In chemistry and chemical physics, a mesophase or mesomorphic phase is a phase of matter intermediate between solid and liquid. Gelatin is a common example of a partially ordered structure in a mesophase. Further, biological structures such as the lipid bilayers of cell membranes are examples of mesophases. Mesophases with long-range positional order but no orientational order are plastic crystals, whereas those with long-range orientational order but only partial or no positional order are liquid crystals. [1] [2]

Contents

Mesophases between solid and liquid Mesophase.svg
Mesophases between solid and liquid

Georges Friedel (1922) called attention to the "mesomorphic states of matter" [3] in his scientific assessment of observations of the so-called liquid crystals. Conventionally a crystal is solid, and crystallization converts liquid to solid. The oxymoron of the liquid crystal is resolved through the notion of mesophases. The observations noted an optic axis persisting in materials that had been melted and had begun to flow. The term liquid crystal persists as a colloquialism, but use of the term was criticized in 1993: In The Physics of Liquid Crystals [4] the mesophases are introduced from the beginning:

...certain organic materials do not show a single transition from solid to liquid, but rather a cascade of transitions involving new phases. The mechanical properties and the symmetry properties of these phases are intermediate between those of a liquid and those of a crystal. For this reason they have often been called liquid crystals. A more proper name is ‘mesomorphic phases’ (mesomorphic: intermediate form) [4] :page one

Further, "The classification of mesophases (first clearly set out by G. Friedel in 1922) is essentially based on symmetry." [4] :10

Molecules that demonstrate mesophases are called mesogens.

In technology, molecules in which the optic axis is subject to manipulation during a mesophase have become commercial products as they can be used to manufacture display devices, known as liquid-crystal displays (LCDs). The susceptibility of the optical axis, called a director, to an electric or magnetic field produces the potential for an optical switch that obscures light or lets it pass. Methods used include the Freedericksz transition, the twisted nematic field effect and the in-plane switching effect. From early liquid crystal displays the buying public has embraced the low-power optical switch facility of mesophases with director.

Consider a solid consisting of a single molecular species and subjected to melting. Ultimately it is rendered to an isotropic state classically referred to as liquid. Mesophases occur before then when an intermediate state of order is still maintained as in the nematic, smectic, and columnar phases of liquid crystals. Mesophases thus exhibit anisotropy. LCD devices work as an optical switch which is turned off and on by an electric field applied to the mesogen with director. The response of the director to the field is expressed with viscosity parameters, as in the Ericksen-Leslie theory in continuum mechanics developed by Jerald Ericksen and Frank Matthews Leslie. LCD devices work only up to the transition temperature when the mesophase changes to the isotropic liquid phase at the so-called clearing point. [5]

Mesophase phenomena are important in many scientific fields. The publishing arms of professional societies have academic journals as needed. For instance, the American Chemical Society has both Macromolecules and Langmuir , while Royal Society of Chemistry has Soft Matter , and American Physical Society has Physical Review E , and Elsevier has Advances in Colloid and Interface Science .

See also

Notes and references

  1. DiLisi, Gregory A (2019-09-01). An Introduction to Liquid Crystals. Morgan & Claypool Publishers. p. 2-2–2-4. doi:10.1088/2053-2571/ab2a6f. ISBN   978-1-64327-684-7.
  2. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " Liquid-crystal state ". doi : 10.1351/goldbook.LT06854
  3. Friedel, G. (1922). "Les états mésomorphes de la matière". Annales de Physique (in French). EDP Sciences. 9 (18): 273–474. Bibcode:1922AnPh....9..273F. doi: 10.1051/anphys/192209180273 . ISSN   0003-4169.
  4. 1 2 3 P.G. de Gennes & J. Prost (1993) The Physics of Liquid Crystals, 2nd edition, Oxford University Press ISBN   0-19-852024-7
  5. Definition of the clearing point. Goldbook IUPAC. Retrieved 16 February 2021.

Related Research Articles

<span class="mw-page-title-main">Liquid crystal</span> State of matter with properties of both conventional liquids and crystals

Liquid crystal (LC) is a state of matter whose properties are between those of conventional liquids and those of solid crystals. For example, a liquid crystal can flow like a liquid, but its molecules may be oriented in a common direction as in solid. There are many types of LC phases, which can be distinguished by their optical properties. The contrasting textures arise due to molecules within one area of material ("domain") being oriented in the same direction but different areas having different orientations. An LC material may not always be in an LC state of matter.

<span class="mw-page-title-main">Metastability</span> Intermediate energetic state within a dynamical system

In chemistry and physics, metastability denotes an intermediate energetic state within a dynamical system other than the system's state of least energy. A ball resting in a hollow on a slope is a simple example of metastability. If the ball is only slightly pushed, it will settle back into its hollow, but a stronger push may start the ball rolling down the slope. Bowling pins show similar metastability by either merely wobbling for a moment or tipping over completely. A common example of metastability in science is isomerisation. Higher energy isomers are long lived because they are prevented from rearranging to their preferred ground state by barriers in the potential energy.

<span class="mw-page-title-main">State of matter</span> Distinct forms that matter take on

In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. Many intermediate states are known to exist, such as liquid crystal, and some states only exist under extreme conditions, such as Bose–Einstein condensates and Fermionic condensates, neutron-degenerate matter, and quark–gluon plasma. For a list of exotic states of matter, see the article List of states of matter.

The columnar phase is a class of mesophases in which molecules assemble into cylindrical structures to act as mesogens. Originally, these kinds of liquid crystals were called discotic liquid crystals or bowlic liquid crystals because the columnar structures are composed of flat-shaped discotic or bowl-shaped molecules stacked one-dimensionally. Since recent findings provide a number of columnar liquid crystals consisting of non-discoid mesogens, it is more common now to classify this state of matter and compounds with these properties as columnar liquid crystals.

A mesogen is a compound that displays liquid crystal properties. Mesogens can be described as disordered solids or ordered liquids because they arise from a unique state of matter that exhibits both solid- and liquid-like properties called the liquid crystalline state. This liquid crystalline state (LC) is called the mesophase and occurs between the crystalline solid (Cr) state and the isotropic liquid (Iso) state at distinct temperature ranges.

A biaxial nematic is a spatially homogeneous liquid crystal with three distinct optical axes. This is to be contrasted to a simple nematic, which has a single preferred axis, around which the system is rotationally symmetric. The symmetry group of a biaxial nematic is i.e. that of a rectangular right parallelepiped, having 3 orthogonal axes and three orthogonal mirror planes. In a frame co-aligned with optical axes the second rank order parameter tensor of a biaxial nematic has the form

Liquid crystal polymers (LCPs) are polymers with the property of liquid crystal, usually containing aromatic rings as mesogens. Despite uncrosslinked LCPs, polymeric materials like liquid crystal elastomers (LCEs) and liquid crystal networks (LCNs) can exhibit liquid crystallinity as well. They are both crosslinked LCPs but have different cross link density. They are widely used in the digital display market. In addition, LCPs have unique properties like thermal actuation, anisotropic swelling, and soft elasticity. Therefore, they can be good actuators and sensors. One of the most famous and classical applications for LCPs is Kevlar, a strong but light fiber with wide applications, notably bulletproof vests.  

<span class="mw-page-title-main">Twisted nematic field effect</span> Type of thin-film-transistor liquid-crystal display technology

The twisted nematic effect (TN-effect) was a main technology breakthrough that made LCDs practical. Unlike earlier displays, TN-cells did not require a current to flow for operation and used low operating voltages suitable for use with batteries. The introduction of TN-effect displays led to their rapid expansion in the display field, quickly pushing out other common technologies like monolithic LEDs and CRTs for most electronics. By the 1990s, TN-effect LCDs were largely universal in portable electronics, although since then, many applications of LCDs adopted alternatives to the TN-effect such as in-plane switching (IPS) or vertical alignment (VA).

<span class="mw-page-title-main">Georges Friedel</span> French mineralogist (1865–1933)

Georges Friedel was a French mineralogist and crystallographer.

<span class="mw-page-title-main">Martin Schadt</span> Swiss physicist and inventor (born 1938)

Martin Schadt is a Swiss physicist and inventor.

<span class="mw-page-title-main">Lyotropic liquid crystal</span>

Lyotropic liquid crystals result when fat-loving and water-loving chemical compounds known as amphiphiles dissolve into a solution that behaves both like a liquid and a solid crystal. This liquid crystalline mesophase includes everyday mixtures like soap and water.

A blue phase mode LCD is a liquid crystal display (LCD) technology that uses highly twisted cholesteric phases in a blue phase. It was first proposed in 2007 to obtain a better display of moving images with, for example, frame rates of 100–120 Hz to improve the temporal response of LCDs. This operational mode for LCDs also does not require anisotropic alignment layers and thus theoretically simplifies the LCD manufacturing process.

There are various classifications of the electro-optical modes of liquid crystal displays (LCDs).

Ferroelectric Liquid Crystal Display (FLCD) is a display technology based on the ferroelectric properties of chiral smectic liquid crystals as proposed in 1980 by Clark and Lagerwall. Reportedly discovered in 1975, several companies pursued the development of FLCD technologies, notably Canon and Central Research Laboratories (CRL), along with others including Seiko, Sharp, Mitsubishi and GEC. Canon and CRL pursued different technological approaches with regard to the switching of display cells, these providing the individual pixels or subpixels, and the production of intermediate pixel intensities between full transparency and full opacity, these differing approaches being adopted by other companies seeking to develop FLCD products.

<span class="mw-page-title-main">Sivaramakrishna Chandrasekhar</span> Indian physicist (1930-2004)

Sivaramakrishna Chandrasekhar FNA, FRS was an Indian physicist who won the Royal Medal in 1994. He was the founder-president of the International Liquid Crystal Society.

<span class="mw-page-title-main">Frank Matthews Leslie</span> Scottish mathematical physicist (1935 to 2000)

Professor Frank Matthews Leslie FRS FRSE was a Scottish mathematical physicist specializing in continuum mechanics. He is remembered for the Ericksen–Leslie Theory which he developed with Jerald Ericksen to describe the viscosity of mesophases associated with liquid crystals. The parameters of this theory are viscosities called "Leslie coefficients", and the angle at which a nematic orientates with respect to the direction of flow in a steady shear flow is called the "Leslie angle".

<span class="mw-page-title-main">Antal Jákli</span> Hungarian-American physicist (born 1956)

Antal I. "Tony" Jákli is a Hungarian-American physicist and professor of chemical physics at Kent State University. He is known for his work with bent-core, flexoelectric, and ferroelectric liquid crystals.

<span class="mw-page-title-main">N. V. Madhusudana</span> Indian physicist (born 1944)

Nelamangala Vedavyasachar Madhusudana is an Indian physicist and an emeritus scientist at Raman Research Institute. Known for his research on liquid crystals, Madhusudhana is an elected fellow of Indian Academy of Sciences and Indian National Science Academy. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, for his contributions to physical sciences in 1989.

<span class="mw-page-title-main">Yuriy Reznikov</span> Ukrainian physicist

Yuriy Reznikov was a Ukrainian physicist, Head of the Department of Crystals at NASU Institute of Physics and a world-renown expert in the field of liquid crystals. He is known for his work on photoalignment, "giant" optical non-linearity of liquid crystals and nano-colloids.