Metamorphic core complex

Last updated
Formation of a metamorphic core complex Core complex.png
Formation of a metamorphic core complex

Metamorphic core complexes are exposed areas of deep crust brought to the surface by crustal extension (stretching). [1] They form, and are exhumed, through relatively fast[ citation needed ] transport of middle and lower continental crust to the Earth's surface [2] in the form of uplifting welts of hot rock and magma. [1] The resulting doming causes the overlying rock to gravitationally collapse, sliding down and usually away from the uplift along low-angle detachment faults. [1] Brittle, faulted cover rock above the detachment surface lies in direct contact with the ductile middle-lower crust below. [3]

Contents

High-grade metamorphic rocks (eclogite-, granulite- to amphibolite- facies) are exposed below the detachment faults (and mylonitic shear zones).[ citation needed ] Amphibolite- to greenschist-facies, syndeformational metamorphism, and ductile-brittle to brittle deformation are shown on the upper-side (hanging-wall), with tilted geometries.[ citation needed ]

They range from several miles to over 50 miles across, and usually exhibit several miles of vertical uplift. [1] They are common in areas of localized crustal extension in otherwise thickened fold-thrust belts. [1] [ clarification needed ] The origin of the low angles of the detachment faults were a subject of debate as of 2022. [3]

Descriptions

Simplified diagram of a symmetric metamorphic core complex Metamorphic core complex diagram.gif
Simplified diagram of a symmetric metamorphic core complex

are characterized by a generally heterogeneous, older metamorphic-plutonic basement terrane overprinted by low-dipping lineated and foliated mylonitic and gneissic fabrics. An unmetamorphosed cover terrane is typically attenuated and sliced by numerous subhorizontal younger-on-older faults. Between the basement and cover terranes is a decollement and/or steep metamorphic gradient with much brecciation and kinematic structural relationships indicating sliding or detachment.

The decollement is also called a detachment fault.

Metamorphic core complexes form as the result of major continental extension, when the middle and lower continental crust is dragged out from beneath the fracturing, extending upper crust. Movement zones capable of producing such effects evolve in space as well as with time. Deforming rocks in the footwall are uplifted through a progression of different metamorphic and deformational environments, producing a characteristic sequence of (overprinted) meso- and microstructures.

Location

The core complex model was first developed in the cordillera of western North America, [5] with older cores found in the north (Eocene), and younger to the south.[ citation needed ] The structures were first described by Peter Misch and his students in 1960. [5] They were formerly called "cordilleran core complexes" after the region in which they were discovered. [5] Globally, core complexes are thought to be found in the Aegean Sea, [6] Anatolia, Iran, Tibet, north China, Slovakia, [7] Venezuela-Trinidad (Miocene), New Zealand and West Antarctica. [8] Core complexes are currently continuing to form in eastern New Guinea. [9]

Core complexes on other planets

A feature at the center of Artemis Corona on Venus has been suggested as a metamorphic core complex. [10] This could be the largest metamorphic core complex in the solar system.

See also

Related Research Articles

<span class="mw-page-title-main">Basin and Range Province</span> Physiographic region extending through western United States and Mexico

The Basin and Range Province is a vast physiographic region covering much of the inland Western United States and northwestern Mexico. It is defined by unique basin and range topography, characterized by abrupt changes in elevation, alternating between narrow faulted mountain chains and flat arid valleys or basins. The physiography of the province is the result of tectonic extension that began around 17 million years ago in the early Miocene epoch.

<span class="mw-page-title-main">Antler orogeny</span> Tectonic event from the Late Devonian into the Mississippian and early Pennsylvanian

The Antler orogeny was a tectonic event that began in the early Late Devonian with widespread effects continuing into the Mississippian and early Pennsylvanian. Most of the evidence for this event is in Nevada but the limits of its reach are unknown. A great volume of conglomeratic deposits of mainly Mississippian age in Nevada and adjacent areas testifies to the existence of an important tectonic event, and implies nearby areas of uplift and erosion, but the nature and cause of that event are uncertain and in dispute. Although it is known as an orogeny, some of the classic features of orogeny as commonly defined such as metamorphism, and granitic intrusives have not been linked to it. In spite of this, the event is universally designated as an orogeny and that practice is continued here. This article outlines what is known and unknown about the Antler orogeny and describes three current theories regarding its nature and origin.

The Nevadan orogeny occurred along the western margin of North America during the Late Jurassic to Early Cretaceous approximately 155 Ma to 145 Ma. Throughout the duration of this orogeny there were at least two different kinds of orogenic processes occurring. During the early stages of orogenesis an "Andean type" continental magmatic arc developed due to subduction of the Farallon oceanic plate beneath the North American Plate. The latter stages of orogenesis, in contrast, saw multiple oceanic arc terranes accreted onto the western margin of North America in a "Cordilleran type" accretionary orogen. Deformation related to the accretion of these volcanic arc terranes is mostly limited to the western regions of the resulting mountain ranges and is absent from the eastern regions. In addition, the deformation experienced in these mountain ranges is mostly due to the Nevadan orogeny and not other external events such as the more recent Sevier and Laramide Orogenies. It is noted that the Klamath Mountains and the Sierra Nevada share similar stratigraphy indicating that they were both formed by the Nevadan orogeny. In comparison with other orogenic events, it appears that the Nevadan Orogeny occurred rather quickly taking only about 10 million years as compared to hundreds of millions of years for other orogenies around the world.

The Lewis Overthrust is a geologic thrust fault structure of the Rocky Mountains found within the bordering national parks of Glacier in Montana, United States and Waterton Lakes in Alberta, Canada. The structure was created due to the collision of tectonic plates about 59-75 million years ago that drove a several mile thick wedge of Precambrian rock 50 mi (80 km) eastwards, causing it to overlie softer Cretaceous age rock that is 1300 to 1400 million years younger.

<span class="mw-page-title-main">Franciscan Complex</span> Late Mesozoic terrane of heterogeneous rocks in the California Coast Ranges

The Franciscan Complex or Franciscan Assemblage is a geologic term for a late Mesozoic terrane of heterogeneous rocks found throughout the California Coast Ranges, and particularly on the San Francisco Peninsula. It was named by geologist Andrew Lawson, who also named the San Andreas fault that defines the western extent of the assemblage.

<span class="mw-page-title-main">Décollement</span> Geological feature

Décollement is a gliding plane between two rock masses, also known as a basal detachment fault. Décollements are a deformational structure, resulting in independent styles of deformation in the rocks above and below the fault. They are associated with both compressional settings and extensional settings.

Extensional tectonics is concerned with the structures formed by, and the tectonic processes associated with, the stretching of a planetary body's crust or lithosphere.

<span class="mw-page-title-main">Detachment fault</span> Geological term associated with large displacements

A detachment fault is a gently dipping normal fault associated with large-scale extensional tectonics. Detachment faults often have very large displacements and juxtapose unmetamorphosed hanging walls against medium to high-grade metamorphic footwalls that are called metamorphic core complexes. They are thought to have formed as either initially low-angle structures or by the rotation of initially high-angle normal faults modified also by the isostatic effects of tectonic denudation. They may also be called denudation faults. Examples of detachment faulting include:

<span class="mw-page-title-main">Oceanic core complex</span> Seabed geologic feature that forms a long ridge perpendicular to a mid-ocean ridge

An oceanic core complex, or megamullion, is a seabed geologic feature that forms a long ridge perpendicular to a mid-ocean ridge. It contains smooth domes that are lined with transverse ridges like a corrugated roof. They can vary in size from 10 to 150 km in length, 5 to 15 km in width, and 500 to 1500 m in height. Their counterparts on land are metamorphic core complexes, which form in areas of continental crustal extension or stretching.

<span class="mw-page-title-main">Accretionary wedge</span> The sediments accreted onto the non-subducting tectonic plate at a convergent plate boundary

An accretionary wedge or accretionary prism forms from sediments accreted onto the non-subducting tectonic plate at a convergent plate boundary. Most of the material in the accretionary wedge consists of marine sediments scraped off from the downgoing slab of oceanic crust, but in some cases the wedge includes the erosional products of volcanic island arcs formed on the overriding plate.

<span class="mw-page-title-main">Wrangellia Terrane</span> Geological area in northwestern North America

The Wrangellia Terrane is a crustal fragment (terrane) extending from the south-central part of Alaska and along the Coast of British Columbia in Canada. Some geologists contend that Wrangellia extends southward to Oregon, although this is not generally accepted.

<span class="mw-page-title-main">Grouse Creek block</span> Accreted terrane west of the Wyoming craton

The Grouse Creek block is a Precambrian basement province of 2.45 to 2.70 billion year old orthogneisses. The Grouse Creek block is one of several Proterozoic and Archean accreted terranes that lie to the north and west of the Wyoming craton, including the Farmington Canyon Complex, the Selway terrane, the Medicine Hat block and the Priest River complex. Together, these terranes comprise part of the basement rock of the North American continent and have been critical to studies of crustal accretion in the Precambrian. Ongoing study of the Grouse Creek block will contribute to understanding the paleogeography of the Wyoming craton prior to its incorporation into the supercontinent Laurentia approximately 1.86 billion years ago. The name was proposed by David Foster and others.

<span class="mw-page-title-main">High pressure metamorphic terranes along the Bangong-Nujiang Suture Zone</span> Geological features

High pressure terranes along the ~1200 km long east-west trending Bangong-Nujiang suture zone (BNS) on the Tibetan Plateau have been extensively mapped and studied. Understanding the geodynamic processes in which these terranes are created is key to understanding the development and subsequent deformation of the BNS and Eurasian deformation as a whole.

<span class="mw-page-title-main">Tilted block faulting</span>

Tilted block faulting, also called rotational block faulting, is a mode of structural evolution in extensional tectonic events, a result of tectonic plates stretching apart. When the upper lithospheric crust experiences extensional pressures, the brittle crust fractures, creating detachment faults. These normal faults express themselves on a regional scale; upper crust fractures into tilted fault blocks, and ductile lower crust ascends. This results in uplift, cooling, and exhumation of ductilely deformed deeper crust. The large unit of tilted blocks and associated crust can form an integral part of metamorphic core complexes, which are found on both continental and oceanic crust.

<span class="mw-page-title-main">Samail Ophiolite</span>

The Samail Ophiolite, also known as the Semail Ophiolite, is a large, ancient geological formation in Oman and the United Arab Emirates in the Arabian Peninsula. It is one of the world's largest and best-exposed segments of oceanic crust, made of volcanic rocks and ultramafic rocks from the Earth's upper mantle that was overthrust onto the continental crust. This ophiolite provides insight into the dynamics of oceanic crust formation and the tectonic processes involved in the creation of ocean basins.

In geology, the term exhumation refers to the process by which a parcel of buried rock approaches Earth's surface.

<span class="mw-page-title-main">Huangling Anticline</span>

The Huangling Anticline or Complex represents a group of rock units that appear in the middle of the Yangtze Block in South China, distributed across Yixingshan, Zigui, Huangling, and Yichang counties. The group of rock involves nonconformity that sedimentary rocks overlie the metamorphic basement. It is a 73-km long, asymmetrical dome-shaped anticline with axial plane orientating in the north-south direction. It has a steeper west flank and a gentler east flank. Basically, there are three tectonic units from the anticline core to the rim, including Archean to Paleoproterozoic metamorphic basement, Neoproterozoic to Jurassic sedimentary rocks, and Cretaceous fluvial deposit sedimentary cover. The northern part of the core is mainly tonalite-trondhjemite-gneiss (TTG) and Cretaceous sedimentary rock called the Archean Kongling Complex. The middle of the core is mainly the Neoproterozoic granitoid. The southern part of the core is the Neoproterozoic potassium granite. Two basins are situated on the western and eastern flanks of the core, respectively, including the Zigui basin and Dangyang basin. Both basins are synforms while Zigui basin has a larger extent of folding. Yuanan Graben and Jingmen Graben are found within the Dangyang Basin area. The Huangling Anticline is an important area that helps unravel the tectonic history of the South China Craton because it has well-exposed layers of rock units from Archean basement rock to Cretaceous sedimentary rock cover due to the erosion of the anticline.

The geology of Ecuador includes ancient Precambrian basement rock and a complex tectonic assembly of new sections of crust from formerly separate landmasses, often uplifted as the Andes or transformed into basins.

The Superior Craton is a stable crustal block covering Quebec, Ontario, and southeast Manitoba in Canada, and northern Minnesota in the United States. It is the biggest craton among those formed during the Archean period. A craton is a large part of the Earth's crust that has been stable and subjected to very little geological changes over a long time. The size of Superior Craton is about 1,572,000 km2. The craton underwent a series of events from 4.3 to 2.57 Ga. These events included the growth, drifting and deformation of both oceanic and continental crusts.

<span class="mw-page-title-main">Northern Snake Range metamorphic core complex</span> Zone of deformed rocks in Nevada

The Northern Snake Range metamorphic core complex is a gently domed structure that forms the northern part of the Snake Range in Nevada. The metamorphic core complex consists of an upper plate of brittlely-faulted Cambrian to Permian mainly carbonate sedimentary rocks, unconformably overlain by Cenozoic volcanic and clastic rocks and separated from a lower plate of ductilely-deformed and metamorphosed Neoproterozoic to Cambrian sedimentary rocks, cut by Mesozoic to Cenozoic intrusions, by the intensely-deformed fault zone of the Snake Range Detachment (SRD). It was selected as one of the first 100 geological heritage sites identified by the International Union of Geological Sciences (IUGS) to be of the highest scientific value.

References

  1. 1 2 3 4 5 "What is a Metamorphic Core Complex". Utah Geological Survey.
  2. 1 2 Lister, G.S.; Davis, G.A. (1989). "The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U.S.A." (PDF). J. Struct. Geol. 11 (1–2): 65–94. Bibcode:1989JSG....11...65L. doi:10.1016/0191-8141(89)90036-9.
  3. 1 2 Bahadori, Alireza; Holt, William E.; Austermann, Jacqueline; Campbell, Lajhon; Rasbury, E. Troy; Davis, Daniel M.; Calvelage, Christopher M.; Flesch, Lucy M. (2022-09-26). "The role of gravitational body forces in the development of metamorphic core complexes". Nature Communications. 13 (1): 5646. doi:10.1038/s41467-022-33361-2. ISSN   2041-1723. PMC   9513114 .
  4. Coney, P.J. (1980). Crittenden, M.D.; Coney, P.J.; Davis, G.H. (eds.). "Cordilleran Metamorphic Core Complexes". GSA Memoir. 153. Geological Society of America: 7–34. doi:10.1130/MEM153-p7.
  5. 1 2 3 Crittenden, Max D.; Coney, Peter J.; Davis, George Herbert; Davis, George Hamilton (1980). "Cordilleran Metamorphic Core Complexes: An Overview" (PDF). Cordilleran Metamorphic Core Complexes. Geological Society of America. ISBN   978-0-8137-1153-9.
  6. Philippon, M. (2014). Philippon, M.; Brun, J.-P.; Gueydan, F.; Sokoutis, D. (eds.). "The interaction between Aegean back-arc extension and Anatolia escape since Middle Miocene". Tectonophysics. 631: 176–188. Bibcode:2014Tectp.631..176P. doi:10.1016/j.tecto.2014.04.039. S2CID   53683418.
  7. Janák, M.; Plašienka, D.; Frey, M.; Cosca, M.; Schmidt, S. TH.; Lupták, B.; Méres, Š. (February 2001). "Cretaceous evolution of a metamorphic core complex, the Veporic unit, Western Carpathians (Slovakia): P–T conditions and in situ40Ar/39Ar UV laser probe dating of metapelites". Journal of Metamorphic Geology. 19 (2): 197–216. Bibcode:2001JMetG..19..197J. doi: 10.1046/j.0263-4929.2000.00304.x . S2CID   129901824.
  8. McFadden, R.; Teyssier, C.; Siddoway, C. S.; Whitney, D.; Fanning, C. M. (2010). "Oblique dilation, melt transfer, and gneiss dome emplacement". Geology. 38 (4): 375–378. Bibcode:2010Geo....38..375M. doi:10.1130/G30493.1.
  9. Ӧsterle, J.E.; Little, T.A.; Seward, D.; Stockli, D.F.; Gamble, J. (2020). "The petrology, geochronology and tectono-magmatic setting of igneous rocks in the Suckling-Dayman metamorphic core complex, Papua New Guinea". Gondwana Research. 83: 390–414. Bibcode:2020GondR..83..390.. doi:10.1016/j.gr.2020.01.014. hdl: 10468/9725 .
  10. Spencer, J. E. (2001). "Possible giant metamorphic core complex at the center of Artemis Corona, Venus". Geological Society of America Bulletin. 113 (3): 333–345. Bibcode:2001GSAB..113..333S. doi:10.1130/0016-7606(2001)113<0333:PGMCCA>2.0.CO;2. ISSN   0016-7606.