Mixtilinear incircles of a triangle

Last updated

In plane geometry, a mixtilinear incircle of a triangle is a circle which is tangent to two of its sides and internally tangent to its circumcircle. The mixtilinear incircle of a triangle tangent to the two sides containing vertex is called the -mixtilinear incircle. Every triangle has three unique mixtilinear incircles, one corresponding to each vertex.

Contents

A
{\displaystyle A}
-Mixtilinear incircle of triangle
A
B
C
{\displaystyle ABC} Define of Mixtilinear cirlce.jpg
-Mixtilinear incircle of triangle

Proof of existence and uniqueness

The -excircle of triangle is unique. Let be a transformation defined by the composition of an inversion centered at with radius and a reflection with respect to the angle bisector on . Since inversion and reflection are bijective and preserve touching points, then does as well. Then, the image of the -excircle under is a circle internally tangent to sides and the circumcircle of , that is, the -mixtilinear incircle. Therefore, the -mixtilinear incircle exists and is unique, and a similar argument can prove the same for the mixtilinear incircles corresponding to and . [1]

Construction

The hexagon
X
C
A
B
Y
T
A
{\displaystyle XCABYT_{A}}
and the intersections
D
,
I
,
E
{\displaystyle D,I,E}
of its 3 pairs of opposite sides. Mixtilinear circle.jpg
The hexagon and the intersections of its 3 pairs of opposite sides.

The -mixtilinear incircle can be constructed with the following sequence of steps. [2]

  1. Draw the incenter by intersecting angle bisectors.
  2. Draw a line through perpendicular to the line , touching lines and at points and respectively. These are the tangent points of the mixtilinear circle.
  3. Draw perpendiculars to and through points and respectively and intersect them in . is the center of the circle, so a circle with center and radius is the mixtilinear incircle

This construction is possible because of the following fact:

Lemma

The incenter is the midpoint of the touching points of the mixtilinear incircle with the two sides.

Proof

Let be the circumcircle of triangle and be the tangency point of the -mixtilinear incircle and . Let be the intersection of line with and be the intersection of line with . Homothety with center on between and implies that are the midpoints of arcs and respectively. The inscribed angle theorem implies that and are triples of collinear points. Pascal's theorem on hexagon inscribed in implies that are collinear. Since the angles and are equal, it follows that is the midpoint of segment . [1]

Other properties

Radius

The following formula relates the radius of the incircle and the radius of the -mixtilinear incircle of a triangle :


where is the magnitude of the angle at . [3]

Relationship with points on the circumcircle

and are cyclic quadrilaterals. [4]

Spiral similarities

is the center of a spiral similarity that maps to respectively. [1]

Relationship between the three mixtilinear incircles

Lines joining vertices and mixtilinear tangency points

The three lines joining a vertex to the point of contact of the circumcircle with the corresponding mixtilinear incircle meet at the external center of similitude of the incircle and circumcircle. [3] The Online Encyclopedia of Triangle Centers lists this point as X(56). [6] It is defined by trilinear coordinates: and barycentric coordinates:

Radical center

The radical center of the three mixtilinear incircles is the point which divides in the ratio: where are the incenter, inradius, circumcenter and circumradius respectively. [5]

Related Research Articles

<span class="mw-page-title-main">Triangle</span> Shape with three sides

A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called vertices, are zero-dimensional points while the sides connecting them, also called edges, are one-dimensional line segments. The triangle's interior is a two-dimensional region. Sometimes an arbitrary edge is chosen to be the base, in which case the opposite vertex is called the apex.

<span class="mw-page-title-main">Right triangle</span> Triangle containing a 90-degree angle

A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular forming a right angle.

<span class="mw-page-title-main">Altitude (triangle)</span> Perpendicular line segment from a triangles side to opposite vertex

In geometry, an altitude of a triangle is a line segment through a vertex and perpendicular to a line containing the side opposite the vertex. This line containing the opposite side is called the extended base of the altitude. The intersection of the extended base and the altitude is called the foot of the altitude. The length of the altitude, often simply called "the altitude", is the distance between the extended base and the vertex. The process of drawing the altitude from the vertex to the foot is known as dropping the altitude at that vertex. It is a special case of orthogonal projection.

<span class="mw-page-title-main">Nine-point circle</span> Circle constructed from a triangle

In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are:

<span class="mw-page-title-main">Incircle and excircles</span> Circles tangent to all three sides of a triangle

In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches the three sides. The center of the incircle is a triangle center called the triangle's incenter.

<span class="mw-page-title-main">Orthocentric system</span> 4 planar points which are all orthocenters of triangles formed by the other 3

In geometry, an orthocentric system is a set of four points on a plane, one of which is the orthocenter of the triangle formed by the other three. Equivalently, the lines passing through disjoint pairs among the points are perpendicular, and the four circles passing through any three of the four points have the same radius.

<span class="mw-page-title-main">Cyclic quadrilateral</span> Quadrilateral whose vertices can all fall on a single circle

In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.

<span class="mw-page-title-main">Incenter</span> Center of the inscribed circle of a triangle

In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.

<span class="mw-page-title-main">Feuerbach point</span> Point where the incircle and nine-point circle of a triangle are tangent

In the geometry of triangles, the incircle and nine-point circle of a triangle are internally tangent to each other at the Feuerbach point of the triangle. The Feuerbach point is a triangle center, meaning that its definition does not depend on the placement and scale of the triangle. It is listed as X(11) in Clark Kimberling's Encyclopedia of Triangle Centers, and is named after Karl Wilhelm Feuerbach.

In geometry, the semiperimeter of a polygon is half its perimeter. Although it has such a simple derivation from the perimeter, the semiperimeter appears frequently enough in formulas for triangles and other figures that it is given a separate name. When the semiperimeter occurs as part of a formula, it is typically denoted by the letter s.

In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center.

In geometry, collinearity of a set of points is the property of their lying on a single line. A set of points with this property is said to be collinear. In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".

<span class="mw-page-title-main">Tangential quadrilateral</span> Polygon whose four sides all touch a circle

In Euclidean geometry, a tangential quadrilateral or circumscribed quadrilateral is a convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral. This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the incenter and its radius is called the inradius. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called circumscribable quadrilaterals, circumscribing quadrilaterals, and circumscriptible quadrilaterals. Tangential quadrilaterals are a special case of tangential polygons.

In Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle.

<span class="mw-page-title-main">Bicentric quadrilateral</span> Convex, 4-sided shape with an incircle and a circumcircle

In Euclidean geometry, a bicentric quadrilateral is a convex quadrilateral that has both an incircle and a circumcircle. The radii and centers of these circles are called inradius and circumradius, and incenter and circumcenter respectively. From the definition it follows that bicentric quadrilaterals have all the properties of both tangential quadrilaterals and cyclic quadrilaterals. Other names for these quadrilaterals are chord-tangent quadrilateral and inscribed and circumscribed quadrilateral. It has also rarely been called a double circle quadrilateral and double scribed quadrilateral.

<span class="mw-page-title-main">Ex-tangential quadrilateral</span> Convex 4-sided polygon whose sidelines are all tangent to an outside circle

In Euclidean geometry, an ex-tangential quadrilateral is a convex quadrilateral where the extensions of all four sides are tangent to a circle outside the quadrilateral. It has also been called an exscriptible quadrilateral. The circle is called its excircle, its radius the exradius and its center the excenter. The excenter lies at the intersection of six angle bisectors. These are the internal angle bisectors at two opposite vertex angles, the external angle bisectors at the other two vertex angles, and the external angle bisectors at the angles formed where the extensions of opposite sides intersect. The ex-tangential quadrilateral is closely related to the tangential quadrilateral.

<span class="mw-page-title-main">Tangential trapezoid</span> Trapezoid whose sides are all tangent to the same circle

In Euclidean geometry, a tangential trapezoid, also called a circumscribed trapezoid, is a trapezoid whose four sides are all tangent to a circle within the trapezoid: the incircle or inscribed circle. It is the special case of a tangential quadrilateral in which at least one pair of opposite sides are parallel. As for other trapezoids, the parallel sides are called the bases and the other two sides the legs. The legs can be equal, but they don't have to be.

<span class="mw-page-title-main">Right kite</span> Symmetrical quadrilateral

In Euclidean geometry, a right kite is a kite that can be inscribed in a circle. That is, it is a kite with a circumcircle. Thus the right kite is a convex quadrilateral and has two opposite right angles. If there are exactly two right angles, each must be between sides of different lengths. All right kites are bicentric quadrilaterals, since all kites have an incircle. One of the diagonals divides the right kite into two right triangles and is also a diameter of the circumcircle.

<span class="mw-page-title-main">Feuerbach hyperbola</span> Unique curve associated with every triangle

In geometry, the Feuerbach hyperbola is a rectangular hyperbola passing through important triangle centers such as the Orthocenter, Gergonne point, Nagel point and Schiffler point. The center of the hyperbola is the Feuerbach point, the point of tangency of the incircle and the nine-point circle.

References

  1. 1 2 3 4 Baca, Jafet. "On Mixtilinear Incircles" (PDF). Retrieved October 27, 2021.
  2. Weisstein, Eric W. "Mixtilinear Incircles". mathworld.wolfram.com. Retrieved 2021-10-31.
  3. 1 2 Yui, Paul (April 23, 2018). "Mixtilinear Incircles". The American Mathematical Monthly. 106 (10): 952–955. doi:10.1080/00029890.1999.12005146 . Retrieved October 27, 2021.
  4. 1 2 Chen, Evan (2016). Euclidean Geometry in Mathematical Olympiads. United States of America: MAA. p. 68. ISBN   978-1-61444-411-4.
  5. 1 2 Nguyen, Khoa Lu (2006). "On Mixtilinear Incircles and Excircles" (PDF). Retrieved November 27, 2021.
  6. "ENCYCLOPEDIA OF TRIANGLE CENTERS". faculty.evansville.edu. Retrieved 2021-10-31.