Motolimod

Last updated
Motolimod
Motolimod structure.png
Identifiers
  • 2-amino-N,N-dipropyl-8-[4-(pyrrolidine-1-carbonyl)phenyl]-3H-1-benzazepine-4-carboxamide
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C28H34N4O2
Molar mass 458.606 g·mol−1
3D model (JSmol)
  • CCCN(CCC)C(=O)C1=CC2=C(C=C(C=C2)C3=CC=C(C=C3)C(=O)N4CCCC4)N=C(C1)N
  • InChI=1S/C28H34N4O2/c1-3-13-31(14-4-2)28(34)24-17-23-12-11-22(18-25(23)30-26(29)19-24)20-7-9-21(10-8-20)27(33)32-15-5-6-16-32/h7-12,17-18H,3-6,13-16,19H2,1-2H3,(H2,29,30)
  • Key:QSPOQCXMGPDIHI-UHFFFAOYSA-N

Motolimod (VTX-2337) is a drug which acts as a potent and selective agonist of toll-like receptor 8 (TLR8), a receptor involved in the regulation of the immune system. It is used to stimulate the immune system, and has potential application as an adjuvant therapy in cancer chemotherapy, although clinical trials have shown only modest benefits. [1] [2] It also worsens neuropathic pain in animal models and has been used to research the potential of targeting TLR8 in some kinds of chronic pain syndromes. [3] [4]

See also

Related Research Articles

Immunotherapy or biological therapy is the treatment of disease by activating or suppressing the immune system. Immunotherapies designed to elicit or amplify an immune response are classified as activation immunotherapies, while immunotherapies that reduce or suppress are classified as suppression immunotherapies. Immunotherapy is under preliminary research for its potential to treat various forms of cancer.

<span class="mw-page-title-main">Toll-like receptor</span> Pain receptors and inflammation

Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune system. They are single-pass membrane-spanning receptors usually expressed on sentinel cells such as macrophages and dendritic cells, that recognize structurally conserved molecules derived from microbes. Once these microbes have reached physical barriers such as the skin or intestinal tract mucosa, they are recognized by TLRs, which activate immune cell responses. The TLRs include TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12, and TLR13. Humans lack genes for TLR11, TLR12 and TLR13 and mice lack a functional gene for TLR10. TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10 are located on the cell membrane, whereas TLR3, TLR7, TLR8, and TLR9 are located in intracellular vesicles.

Neuropathic pain is pain caused by damage or disease affecting the somatosensory system. Neuropathic pain may be associated with abnormal sensations called dysesthesia or pain from normally non-painful stimuli (allodynia). It may have continuous and/or episodic (paroxysmal) components. The latter resemble stabbings or electric shocks. Common qualities include burning or coldness, "pins and needles" sensations, numbness and itching.

<span class="mw-page-title-main">Cancer immunotherapy</span> Artificial stimulation of the immune system to treat cancer

Cancer immunotherapy is the stimulation of the immune system to treat cancer, improving on the immune system's natural ability to fight the disease. It is an application of the fundamental research of cancer immunology and a growing subspecialty of oncology.

<span class="mw-page-title-main">Nabilone</span> Synthetic cannabinoid

Nabilone, sold under the brand name Cesamet among others, is a synthetic cannabinoid with therapeutic use as an antiemetic and as an adjunct analgesic for neuropathic pain. It mimics tetrahydrocannabinol (THC), the primary psychoactive compound found naturally occurring in Cannabis.

<span class="mw-page-title-main">IRAK4</span>

IRAK-4, in the IRAK family, is a protein kinase involved in signaling innate immune responses from Toll-like receptors. It also supports signaling from T-cell receptors. IRAK4 contains domain structures which are similar to those of IRAK1, IRAK2, IRAKM and Pelle. IRAK4 is unique compared to IRAK1, IRAK2 and IRAKM in that it functions upstream of the other IRAKs, but is more similar to Pelle in this trait. IRAK4 has important clinical applications.

<span class="mw-page-title-main">AHCC</span> Dietary supplement

AHCC, or active hexose correlated compound, is an alpha-glucan rich nutritional supplement produced from the mycelia of shiitake of the basidiomycete family of mushrooms. The product/supplement/compound-mix is a subject of research as a potential anti-cancer agent but has not been conclusively found to treat cancer or any other disease, and there are conflict of interest concerns about the published research. AHCC is a popular alternative medicine in Japan.

<span class="mw-page-title-main">Pertuzumab</span> Pharmaceutical drug

Pertuzumab, sold under the brand name Perjeta, is a monoclonal antibody used in combination with trastuzumab and docetaxel for the treatment of metastatic HER2-positive breast cancer; it also used in the same combination as a neoadjuvant in early HER2-positive breast cancer.

<span class="mw-page-title-main">Toll-like receptor 4</span> Protein-coding gene in the species Homo sapiens

Toll-like receptor 4 is a protein that in humans is encoded by the TLR4 gene. TLR4 is a transmembrane protein, member of the toll-like receptor family, which belongs to the pattern recognition receptor (PRR) family. Its activation leads to an intracellular signaling pathway NF-κB and inflammatory cytokine production which is responsible for activating the innate immune system.

<span class="mw-page-title-main">Toll-like receptor 8</span> Protein-coding gene in the species Homo sapiens

Toll-like receptor 8 is a protein that in humans is encoded by the TLR8 gene. TLR8 has also been designated as CD288. It is a member of the toll-like receptor (TLR) family.

<span class="mw-page-title-main">Tebanicline</span> Chemical compound

Tebanicline is a potent synthetic nicotinic (non-opioid) analgesic drug developed by Abbott. It was developed as a less toxic analog of the potent poison dart frog-derived compound epibatidine, which is about 200 times stronger than morphine as an analgesic, but produces extremely dangerous toxic side effects. Like epibatidine, tebanicline showed potent analgesic activity against neuropathic pain in both animal and human trials, but with far less toxicity than its parent compound. It acts as a partial agonist at neuronal nicotinic acetylcholine receptors, binding to both the α3β4 and the α4β2 subtypes.

Entolimod (CBLB502) is being developed by Cleveland Biolabs, Inc. for dual indications under the U.S. Food & Drug Administration’s (FDA) animal efficacy rule as a pivotal-stage radiation countermeasure, and under the FDA’s traditional drug approval pathway as a cancer treatment.

<span class="mw-page-title-main">(+)-Naloxone</span> Drug

(+)-Naloxone (dextro-naloxone) is a drug which is the opposite enantiomer of the opioid antagonist drug (−)-naloxone. Unlike (-)-naloxone, (+)-naloxone has no significant affinity for opioid receptors, but instead has been discovered to act as a selective antagonist of Toll-like receptor 4. This receptor is involved in immune system responses, and activation of TLR4 induces glial activation and release of inflammatory mediators such as TNF-α and Interleukin-1.

Chemotherapy-induced peripheral neuropathy (CIPN) is a nerve-damaging side effect of antineoplastic agents in the common cancer treatment, chemotherapy. CIPN afflicts between 30% and 40% of patients undergoing chemotherapy. Antineoplastic agents in chemotherapy are designed to eliminate rapidly dividing cancer cells, but they can also damage healthy structures, including the peripheral nervous system. CIPN involves various symptoms such as tingling, pain, and numbness in the hands and feet. These symptoms can impair activities of daily living, such as typing or dressing, reduce balance, and increase risk of falls and hospitalizations. They can also give cause to reduce or discontinue chemotherapy. Researchers have conducted clinical trials and studies to uncover the various symptoms, causes, pathogenesis, diagnoses, risk factors, and treatments of CIPN.

Urelumab is a fully human, non‐ligand binding, CD137 agonist immunoglobulin‐γ 4 (IgG4) monoclonal antibody. It was developed utilizing Medarex's UltiMAb(R) technology by Bristol-Myers Squibb for the treatment of cancer and solid tumors. Urelumab promotes anti-tumor immunity, or an immune response against tumor cells, via CD137 activation. The application of Urelumab has been limited due to the fact that it can cause severe liver toxicity.

Tumor-associated macrophages (TAMs) are a class of immune cells present in high numbers in the microenvironment of solid tumors. They are heavily involved in cancer-related inflammation. Macrophages are known to originate from bone marrow-derived blood monocytes or yolk sac progenitors, but the exact origin of TAMs in human tumors remains to be elucidated. The composition of monocyte-derived macrophages and tissue-resident macrophages in the tumor microenvironment depends on the tumor type, stage, size, and location, thus it has been proposed that TAM identity and heterogeneity is the outcome of interactions between tumor-derived, tissue-specific, and developmental signals.

<span class="mw-page-title-main">Pembrolizumab</span> Pharmaceutical drug used in cancer treatment

Pembrolizumab, sold under the brand name Keytruda, is a humanized antibody used in cancer immunotherapy that treats melanoma, lung cancer, head and neck cancer, Hodgkin lymphoma, stomach cancer, cervical cancer, and certain types of breast cancer. It is given by slow injection into a vein.

<span class="mw-page-title-main">Lurbinectedin</span> Chemical compound

Lurbinectedin, sold under the brand name Zepzelca, is a medication used for the treatment of small cell lung cancer.

<span class="mw-page-title-main">Vesatolimod</span> Chemical compound

Vesatolimod (GS-9620) is an antiviral drug developed by Gilead Sciences, which acts as a potent and selective agonist of Toll-like receptor 7 (TLR7), a receptor involved in the regulation of the immune system. It is used to stimulate the immune system, which can increase its ability to combat chronic viral infections. Vesatolimod is in clinical trials to determine whether it is safe and effective in patients with Hepatitis B and HIV/AIDS, and has also shown activity against other viral diseases such as norovirus and enterovirus 71.

<span class="mw-page-title-main">CU-CPT9a</span>

CU-CPT9a is a drug which acts as a potent and selective antagonist of Toll-like receptor 8 (TLR8), with an IC50 of 0.5nM. Activation of toll-like receptors triggers release of cytokines and other signalling factors, leading to inflammation. This is an essential part of the immune system's response to infection, but chronic activation of TLR signalling is thought to be involved in various inflammatory and autoimmune disorders. CU-CPT9a has immunosuppressant properties, and may have applications in the treatment of autoimmune disorders, as well as being used in scientific research into the function of TLR8.

References

  1. Monk BJ, Brady MF, Aghajanian C, Lankes HA, Rizack T, Leach J, et al. (May 2017). "A phase 2, randomized, double-blind, placebo-controlled study of chemo-immunotherapy combination using motolimod with pegylated liposomal doxorubicin in recurrent or persistent ovarian cancer: a Gynecologic Oncology Group partners study". Annals of Oncology. 28 (5): 996–1004. doi: 10.1093/annonc/mdx049 . PMC   5406764 . PMID   28453702.
  2. Ferris RL, Saba NF, Gitlitz BJ, Haddad R, Sukari A, Neupane P, et al. (November 2018). "Effect of Adding Motolimod to Standard Combination Chemotherapy and Cetuximab Treatment of Patients With Squamous Cell Carcinoma of the Head and Neck: The Active8 Randomized Clinical Trial". JAMA Oncology. 4 (11): 1583–1588. doi: 10.1001/jamaoncol.2018.1888 . PMC   6248084 . PMID   29931076.
  3. Zhang ZJ, Guo JS, Li SS, Wu XB, Cao DL, Jiang BC, et al. (December 2018). "TLR8 and its endogenous ligand miR-21 contribute to neuropathic pain in murine DRG". The Journal of Experimental Medicine. 215 (12): 3019–3037. doi: 10.1084/jem.20180800 . PMC   6279408 . PMID   30455267.
  4. Zhao LX, Jiang M, Bai XQ, Cao DL, Wu XB, Zhang J, et al. (December 2020). "TLR8 in the Trigeminal Ganglion Contributes to the Maintenance of Trigeminal Neuropathic Pain in Mice". Neuroscience Bulletin. doi: 10.1007/s12264-020-00621-4 . PMC   8055805 . PMID   33355900.