NAS Award in Chemical Sciences

Last updated

The National Academy of Sciences Award in Chemical Sciences is awarded for innovative research in the chemical sciences that in the broadest sense contributes to a better understanding of the natural sciences and to the benefit of humanity. [1]

Contents

Recipients

Source: National Academy of Sciences

For his pioneering contributions to our understanding of the rates and pathways of chemical processes in gas phase, condensed phase, and surfaces through insightful analyses and creation of computational tools such as surface hopping, which is the standard starting point for simulating molecular motion evolving on multiple potential energy surfaces.

For her pioneering contributions to our understanding of the chemical, biological and spectroscopic properties of the DNA double helix.

For co-inventing the technology for efficient site-specific genome engineering using CRISPR/Cas9 nucleases.

For making fundamental contributions to the controlled synthesis of colloidal inorganic nanocrystals, measuring and understanding their unique physical properties, and utilizing these properties for applications ranging from light generation and harvesting to biological imaging.

For founding bio-orthogonal chemistry, and applying this novel chemistry to install artificial sugars on the surface of living cells, enabling the study of their roles in cancer and the immune system.

For his development of molecular negative ion photoelectron spectroscopy, and the fundamental insights into molecular electron affinities and intramolecular dynamics derived therefrom.

For his pioneering contributions to the chemical synthesis of DNA and RNA that made it possible to decode and encode genes and genomes.

In recognition of his pioneering experimental and conceptual contributions to the understanding of surface chemistry and catalysis at a microscopic and molecular level.

For groundbreaking contributions to understanding structure and function of catalysts, useful in the production of environmentally friendly plastics and new materials for the benefit of mankind.

For groundbreaking contributions to understanding catalysis and complex biological machines — the purinosome and DNA polymerases — which demonstrate the power of chemistry to solve biological problems.

For his leading role in the development of a fundamental building block for nanoscience, colloidial semiconductor nanocrystals, and for his contributions to our understanding of the quantum effects that control their optical properties.

For exceptional accomplishments in the synthesis of positron-emitting chemical probes, and for their implementation in biomedical imaging and studies of in vivo biochemistry, which have had a major impact on human health worldwide.

For landmark work on the mechanisms and regulation of ribonucleotide reductases, a compelling demonstration of the power of chemical investigations to solve problems in biology.

For numerous innovative contributions at the interfaces of physical, organic, and inorganic chemistry, including the discoveries of alkane carbon-hydrogen bond oxidative addition and 1,4-benzene diradicals.

For his wide-ranging accomplishments in natural products total synthesis and for his pioneering chemical synthesis of carbohydrates for the development of anticancer vaccines.

For his leading role in the development of bioorganic chemistry, and especially for deep and lasting contributions to the understanding of enzyme mechanisms.

For being a pioneer, leader, and central figure in the development of density functional theory in chemistry and for his deep insights into quantum chemical calculations.

For his demonstration of long-range electron tunneling in proteins, his inspirational teaching and mentoring of students, and his unselfish service as a statesman for chemistry.

For his brilliant and useful contributions to the theory and practice of organic synthesis and to chemical biology and medicine.

For his wide-ranging contributions to the fundamental understanding of chemical reactivity, especially the acid-base, nucleophilic, and hydrogen-bonding properties of ions and molecules.

For his discovery of chemical reactions – the sharpless asymmetric epoxidation, dihydroxylation, and aminohydroxylation – which have revolutionized organic chemistry by transforming asymmetric synthesis from near-impossible to routine.

For defining modern physical organic chemistry – the integration of physical chemistry and organic synthesis applied to the study of the relations between the structure and reactivity of organic molecules.

For his fundamental developments in mechanistic electrochemistry, electrochemiluminescence, semiconductor photoelectrochemistry, and scanning electrochemical microscopy.

For his fundamental contributions to boron chemistry, especially his groundbreaking studies of boron hydrides and metallocarboranes and their uses in catalysts and radioimaging.

For carrying out the pioneering work that established the new field of laser femtochemistry, using ultrafast lasers and molecular beams to probe the dynamics of the chemical bond in real time.

For her development of a method for determining essentially equal-atom crystal and molecular structures by X-ray analysis, thereby profoundly affecting the practice of chemistry.

For his discoveries on the structure of a vast array of important natural products and unique contributions to the role of retinal in vision.

For his contributions in unifying the fields of inorganic and biological chemistry through studies of metal clusters and metalloproteins.

For elucidation of fundamental questions of stereochemistry and reaction mechanism and for pioneering work on the synthesis and properties of designed inclusion (host–guest) complexes.

For his pioneering laser-based techniques, deep insights, and seminal contributions, which have influenced every facet of chemical reaction dynamics.

For his broad contribution to modern inorganic chemistry and, in particular, for having established the existence and importance of multiple metal-to-metal bonding.

For his imaginative invention of novel synthetic methods, his enunciation of the mechanism of enzyme reactions, and his development of systems that mimic enzyme activity.

For his basic studies, which enhanced the power of spectroscopy and increased our understanding of the structural and dynamic properties of membranes in living cells.

For his studies of organoboranes, which revealed important new chemistry and established them as versatile intermediates in synthesis.

For his unifying contributions to chemistry, bringing together theory and experiment; quantum mechanics; and organic, inorganic, organometallic, and solid state chemistry.

For his scholarly research, distinguished by pioneering development of new methods, followed by brilliant theoretical and experimental examination of molecular systems having broad impact on current views of chemical reactivity.

For his pioneering work on inorganic reaction mechanisms, specifically his discovery of 'inner-' and 'outer-sphere' mechanisms of electron transfer reactions, which profoundly influenced studies in biochemistry and organic chemistry.

For his extraordinarily creative contributions to the synthesis of complex organic molecules by the development of novel methods and strategies.

For his contributions and influence in theoretical and experimental polymer chemistry, notably his work on polymer interactions, polymer visco-elasticity, the helix coil transition in bio-polymers, the theory of light scattering, and the study of extraordinarily large DNA molecules.

For his pioneering studies in applying physical chemistry to the understanding of organic chemistry and enzymatic reactions.

For his studies, which elucidated in structural terms the properties of stable molecules of progressively higher significance to the chemical, geological, and biological sciences.

See also

Related Research Articles

Chemistry is the scientific study of the properties and behavior of matter. It is a physical science under natural sciences that covers the elements that make up matter to the compounds made of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during a reaction with other substances. Chemistry also addresses the nature of chemical bonds in chemical compounds.

<span class="mw-page-title-main">Chemist</span> Scientist trained in the study of chemistry

A chemist is a scientist trained in the study of chemistry. Chemists study the composition of matter and its properties. Chemists carefully describe the properties they study in terms of quantities, with detail on the level of molecules and their component atoms. Chemists carefully measure substance proportions, chemical reaction rates, and other chemical properties. In Commonwealth English, pharmacists are often called chemists.

The following outline is provided as an overview of and topical guide to chemistry:

<span class="mw-page-title-main">Inorganic chemistry</span> Field of chemistry

Inorganic chemistry deals with synthesis and behavior of inorganic and organometallic compounds. This field covers chemical compounds that are not carbon-based, which are the subjects of organic chemistry. The distinction between the two disciplines is far from absolute, as there is much overlap in the subdiscipline of organometallic chemistry. It has applications in every aspect of the chemical industry, including catalysis, materials science, pigments, surfactants, coatings, medications, fuels, and agriculture.

<span class="mw-page-title-main">Organic chemistry</span> Subdiscipline of chemistry, with especial focus on carbon compounds

Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms. Study of structure determines their structural formula. Study of properties includes physical and chemical properties, and evaluation of chemical reactivity to understand their behavior. The study of organic reactions includes the chemical synthesis of natural products, drugs, and polymers, and study of individual organic molecules in the laboratory and via theoretical study.

Physical science is a branch of natural science that studies non-living systems, in contrast to life science. It in turn has many branches, each referred to as a "physical science", together called the "physical sciences".

Polymer chemistry is a sub-discipline of chemistry that focuses on the structures of chemicals, chemical synthesis, and chemical and physical properties of polymers and macromolecules. The principles and methods used within polymer chemistry are also applicable through a wide range of other chemistry sub-disciplines like organic chemistry, analytical chemistry, and physical chemistry. Many materials have polymeric structures, from fully inorganic metals and ceramics to DNA and other biological molecules. However, polymer chemistry is typically related to synthetic and organic compositions. Synthetic polymers are ubiquitous in commercial materials and products in everyday use, such as plastics, and rubbers, and are major components of composite materials. Polymer chemistry can also be included in the broader fields of polymer science or even nanotechnology, both of which can be described as encompassing polymer physics and polymer engineering.

<span class="mw-page-title-main">Medicinal chemistry</span> Scientific branch of chemistry

Medicinal or pharmaceutical chemistry is a scientific discipline at the intersection of chemistry and pharmacy involved with designing and developing pharmaceutical drugs. Medicinal chemistry involves the identification, synthesis and development of new chemical entities suitable for therapeutic use. It also includes the study of existing drugs, their biological properties, and their quantitative structure-activity relationships (QSAR).

Supramolecular chemistry refers to the branch of chemistry concerning chemical systems composed of a discrete number of molecules. The strength of the forces responsible for spatial organization of the system range from weak intermolecular forces, electrostatic charge, or hydrogen bonding to strong covalent bonding, provided that the electronic coupling strength remains small relative to the energy parameters of the component. While traditional chemistry concentrates on the covalent bond, supramolecular chemistry examines the weaker and reversible non-covalent interactions between molecules. These forces include hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi–pi interactions and electrostatic effects.

The Alan T. Waterman Award, named after Alan Tower Waterman, is the United States's highest honorary award for scientists no older than 40, or no more than 10 years past receipt of their Ph.D. It is awarded on a yearly basis by the National Science Foundation. In addition to the medal, the awardee receives a grant of $1,000,000 to be used at the institution of their choice over a period of five years for advanced scientific research.

The Max Planck Institute of Colloids and Interfaces is located in Potsdam-Golm Science Park in Golm, Potsdam, Germany. It was founded in 1990 as a successor of the Institute for Physical Chemistry and for Organic Chemistry, both in Berlin-Adlershof, and for Polymer Chemistry in Teltow. In 1999, it transferred to newly constructed extension facilities in Golm. It is one of 80 institutes in the Max Planck Society (Max-Planck-Gesellschaft).

The Willard Gibbs Award, presented by the Chicago Section of the American Chemical Society, was established in 1910 by William A. Converse (1862–1940), a former Chairman and Secretary of the Chicago Section of the society and named for Professor Josiah Willard Gibbs (1839–1903) of Yale University. Gibbs, whose formulation of the Phase Rule founded a new science, is considered by many to be the only American-born scientist whose discoveries are as fundamental in nature as those of Newton and Galileo.

<span class="mw-page-title-main">Max Planck Institute for Coal Research</span>

The Max-Planck-Institut für Kohlenforschung is an institute located in Mülheim an der Ruhr, Germany specializing in chemical research on catalysis. It is one of the 86 institutes in the Max Planck Society (Max-Planck-Gesellschaft). It was founded in 1912 in Mülheim an der Ruhr as the Kaiser Wilhelm Institute for Coal Research to study the chemistry and uses of coal, and became an independent Max Planck Institute in 1949.

Physical organic chemistry, a term coined by Louis Hammett in 1940, refers to a discipline of organic chemistry that focuses on the relationship between chemical structures and reactivity, in particular, applying experimental tools of physical chemistry to the study of organic molecules. Specific focal points of study include the rates of organic reactions, the relative chemical stabilities of the starting materials, reactive intermediates, transition states, and products of chemical reactions, and non-covalent aspects of solvation and molecular interactions that influence chemical reactivity. Such studies provide theoretical and practical frameworks to understand how changes in structure in solution or solid-state contexts impact reaction mechanism and rate for each organic reaction of interest.

Harvey Prize is an annual Israeli award for breakthroughs in science and technology, as well as contributions to peace in the Middle East granted by the Technion in Haifa.

<span class="mw-page-title-main">Institute of Chemical Process Fundamentals</span>

Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, v.v.i. is one of the six institutes belonging to the CAS chemical sciences section and is a research centre in a variety of fields such as chemistry, biochemistry, catalysis and environment.

The following outline is provided as an overview of and topical guide to natural science:

<span class="mw-page-title-main">Alexander Butlerov Chemistry Institute</span>

Alexander Butlerov Chemistry Institute — structural unit of Kazan Federal University, carries out research, development and academic activity in the area of basic and applied chemistry.

<span class="mw-page-title-main">Roeland Nolte</span> Dutch chemist, emeritus Royal Netherlands of Arts and Sciences professor

Roeland J. M. Nolte is a Dutch chemist, known for his work in the fields of organic chemistry, biochemistry, polymer chemistry, and supramolecular chemistry. He is an emeritus Royal Netherlands of Arts and Sciences professor and an emeritus professor of Organic Chemistry at Radboud University in Nijmegen, The Netherlands. Currently, he holds a special chair, i.e. professor of Molecular Nanotechnology, at this university. Nolte is considered to be one of the pioneers of the field of supramolecular chemistry, which encompasses the design and synthesis of new chemical structures from low molecular weight compounds and biopolymers using so-called non-covalent interactions. He published many studies on supramolecular assembly and biomimetic catalysts, which find applications in the field of nanomaterials and medicine.

References

  1. "NAS Award in Chemical Sciences". National Academy of Sciences. Retrieved 27 January 2017.