Nanochannel glass materials

Last updated
Nanochannel glass materials are complex glass structures containing large numbers of parallel hollow channels. Source: Naval Research Laboratory - Technology Transfer Office. TTO Nanochannel Glass Materials.jpg
Nanochannel glass materials are complex glass structures containing large numbers of parallel hollow channels. Source: Naval Research Laboratory - Technology Transfer Office.

Nanochannel glass materials are an experimental mask technology that is an alternate method for fabricating nanostructures, although optical lithography is the predominant patterning technique. [1]

Contents

Nanochannel glass materials are complex glass structures containing large numbers of parallel hollow channels. In its simplest form, the hollow channels are arranged in geometric arrays with packing densities as great as 1011 channels/cm2. Channel dimensions are controllable from micrometers to tens of nanometers, while retaining excellent channel uniformity. Exact replicas of the channel glass can be made from a variety of materials. This is a low cost method for creating identical structures with nanoscale features in large numbers. [2] [3]

Characteristics

These materials have high density of uniform channels with diameters from 15 micrometres to 15 nanometers. These are rigid structures with serviceable temperatures to at least 300 °C, with potential up to 1000 °C. Furthermore, these are optically transparent photonic structures with high degree of reproducibility.

Applications

These can be used as a material for chromatographic columns, unidirectional conductors, Microchannel plate and nonlinear optical devices. Other uses are as masks for semiconductor development, including ion implantation, optical lithography, and reactive ion etching. [2] [3] [4]

See also

Related Research Articles

<span class="mw-page-title-main">Electron microscope</span> Type of microscope with electrons as a source of illumination

An electron microscope is a microscope that uses a beam of electrons as a source of illumination. They use electron optics that are analogous to the glass lenses of an optical light microscope to control the electron beam, for instance focusing them to produce magnified images or electron diffraction patterns. As the wavelength of an electron can be up to 100,000 times smaller than that of visible light, electron microscopes have a much higher resolution of about 0.1 nm, which compares to about 200 nm for light microscopes. Electron microscope may refer to:

<span class="mw-page-title-main">Ion implantation</span> Use of ions to cause chemical changes

Ion implantation is a low-temperature process by which ions of one element are accelerated into a solid target, thereby changing the physical, chemical, or electrical properties of the target. Ion implantation is used in semiconductor device fabrication and in metal finishing, as well as in materials science research. The ions can alter the elemental composition of the target if they stop and remain in the target. Ion implantation also causes chemical and physical changes when the ions impinge on the target at high energy. The crystal structure of the target can be damaged or even destroyed by the energetic collision cascades, and ions of sufficiently high energy can cause nuclear transmutation.

Photolithography is a process used in the manufacturing of integrated circuits. It involves using light to transfer a pattern onto a substrate, typically a silicon wafer.

A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre. More generally, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less and an unconstrained length. At these scales, quantum mechanical effects are important—which coined the term "quantum wires".

<span class="mw-page-title-main">Nanopore</span>

A nanopore is a pore of nanometer size. It may, for example, be created by a pore-forming protein or as a hole in synthetic materials such as silicon or graphene.

<span class="mw-page-title-main">Photomask</span> Photolithographic Tool

A photomask is an opaque plate with transparent areas that allow light to shine through in a defined pattern. Photomasks are commonly used in photolithography for the production of integrated circuits to produce a pattern on a thin wafer of material. In semiconductor manufacturing, a mask is sometimes called a reticle.

<span class="mw-page-title-main">Electron-beam lithography</span> Lithographic technique that uses a scanning beam of electrons

Electron-beam lithography is the practice of scanning a focused beam of electrons to draw custom shapes on a surface covered with an electron-sensitive film called a resist (exposing). The electron beam changes the solubility of the resist, enabling selective removal of either the exposed or non-exposed regions of the resist by immersing it in a solvent (developing). The purpose, as with photolithography, is to create very small structures in the resist that can subsequently be transferred to the substrate material, often by etching.

<span class="mw-page-title-main">Alec Broers, Baron Broers</span> British electrical engineer

Alec Nigel Broers, Baron Broers, is a British electrical engineer.

Masklesslithography (MPL) is a photomask-less photolithography-like technology used to project or focal-spot write the image pattern onto a chemical resist-coated substrate by means of UV radiation or electron beam.

Nanolithography (NL) is a growing field of techniques within nanotechnology dealing with the engineering of nanometer-scale structures on various materials.

<span class="mw-page-title-main">Nanoimprint lithography</span> Method of fabricating nanometer scale patterns using a special stamp

Nanoimprint lithography (NIL) is a method of fabricating nanometer-scale patterns. It is a simple nanolithography process with low cost, high throughput and high resolution. It creates patterns by mechanical deformation of imprint resist and subsequent processes. The imprint resist is typically a monomer or polymer formulation that is cured by heat or UV light during the imprinting. Adhesion between the resist and the template is controlled to allow proper release.

<span class="mw-page-title-main">Microfabrication</span> Fabrication at micrometre scales and smaller

Microfabrication is the process of fabricating miniature structures of micrometre scales and smaller. Historically, the earliest microfabrication processes were used for integrated circuit fabrication, also known as "semiconductor manufacturing" or "semiconductor device fabrication". In the last two decades microelectromechanical systems (MEMS), microsystems, micromachines and their subfields, microfluidics/lab-on-a-chip, optical MEMS, RF MEMS, PowerMEMS, BioMEMS and their extension into nanoscale have re-used, adapted or extended microfabrication methods. Flat-panel displays and solar cells are also using similar techniques.

Electron-beam-induced deposition (EBID) is a process of decomposing gaseous molecules by an electron beam leading to deposition of non-volatile fragments onto a nearby substrate. The electron beam is usually provided by a scanning electron microscope, which results in high spatial accuracy and the possibility to produce free-standing, three-dimensional structures.

<span class="mw-page-title-main">Nanofluidics</span> Dynamics of fluids confined in nanoscale structures

Nanofluidics is the study of the behavior, manipulation, and control of fluids that are confined to structures of nanometer characteristic dimensions. Fluids confined in these structures exhibit physical behaviors not observed in larger structures, such as those of micrometer dimensions and above, because the characteristic physical scaling lengths of the fluid, very closely coincide with the dimensions of the nanostructure itself.

Patterned media is a potential future hard disk drive technology to record data in magnetic islands, as opposed to current hard disk drive technology where each bit is stored in 20–30 magnetic grains within a continuous magnetic film. The islands would be patterned from a precursor magnetic film using nanolithography. It is one of the proposed technologies to succeed perpendicular recording due to the greater storage densities it would enable. BPM was introduced by Toshiba in 2010.

Ion-beam lithography is the practice of scanning a focused beam of ions in a patterned fashion across a surface in order to create very small structures such as integrated circuits or other nanostructures.

Stencil lithography is a novel method of fabricating nanometer scale patterns using nanostencils, stencils with nanometer size apertures. It is a resist-less, simple, parallel nanolithography process, and it does not involve any heat or chemical treatment of the substrates .

A model lipid bilayer is any bilayer assembled in vitro, as opposed to the bilayer of natural cell membranes or covering various sub-cellular structures like the nucleus. They are used to study the fundamental properties of biological membranes in a simplified and well-controlled environment, and increasingly in bottom-up synthetic biology for the construction of artificial cells. A model bilayer can be made with either synthetic or natural lipids. The simplest model systems contain only a single pure synthetic lipid. More physiologically relevant model bilayers can be made with mixtures of several synthetic or natural lipids.

Nanofluidic circuitry is a nanotechnology aiming for control of fluids in nanometer scale. Due to the effect of an electrical double layer within the fluid channel, the behavior of nanofluid is observed to be significantly different compared with its microfluidic counterparts. Its typical characteristic dimensions fall within the range of 1–100 nm. At least one dimension of the structure is in nanoscopic scale. Phenomena of fluids in nano-scale structure are discovered to be of different properties in electrochemistry and fluid dynamics.

<span class="mw-page-title-main">Ion track</span>

Ion tracks are damage-trails created by swift heavy ions penetrating through solids, which may be sufficiently-contiguous for chemical etching in a variety of crystalline, glassy, and/or polymeric solids. They are associated with cylindrical damage-regions several nanometers in diameter and can be studied by Rutherford backscattering spectrometry (RBS), transmission electron microscopy (TEM), small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS) or gas permeation.

References

  1. Gimzewski, James K; Welland, M.E, eds. (May 1995). Ultimate limits of fabrication and measurement. Springer. pp. 13, 14, 15. doi:10.1007/978-94-011-0041-0. ISBN   978-0-7923-3504-7. * Proceedings of the NATO Advanced Research Workshop, Cambridge, U.K., April 1--3, 1994 Series: NATO Science Series E: (closed), Vol. 292
  2. 1 2 They are also used in dental and medical X-ray sensors optically coupled or internally coated with a scintillator to increase efficiency. "Nanochannel Glass Materials". Naval Research Laboratory. Technology Transfer Office, Code 1004. Retrieved 2011-07-04.
  3. 1 2 Tonucci, Ronald J.; Hubler, Graham K. (2007). "Materials Characterization and Nanofabrication Methods—Nanochannel Glass Materials". In Sibilia, Concita; Wiersma, Diederik S. (eds.). AIP Conference Proceedings. Vol. 959. pp. 59–71. doi:10.1063/1.2821605. ISBN   978-0-7354-0473-1.
  4. Pearson, D. H.; Tonucci, R. J. (1995). "Nanochannel Glass Replica Membranes". Science. 270 (5233): 68–70. Bibcode:1995Sci...270...68P. doi:10.1126/science.270.5233.68. S2CID   220110394.

Further reading