Narrow-gap semiconductor

Last updated

Narrow-gap semiconductors are semiconducting materials with a magnitude of bandgap that is smaller than 0.7 eV, which corresponds to an infrared absorption cut-off wavelength over 2.5 micron. A more extended definition includes all semiconductors with bandgaps smaller than silicon (1.1 eV). [1] [2] Modern terahertz, [3] infrared, [4] and thermographic [5] technologies are all based on this class of semiconductors.

Contents

Narrow-gap materials made it possible to realize satellite remote sensing, [6] photonic integrated circuits for telecommunications, [7] [8] [9] and unmanned vehicle Li-Fi systems, [10] in the regime of Infrared detector and thermography. [11] [12] They are also the materials basis for terahertz technology, including security surveillance of concealed weapon uncovering, [13] [14] [15] safe medical and industrial imaging with terahertz tomography, [16] [17] [18] as well as dielectric wakefield accelerators. [19] [20] [21] Besides, thermophotovoltaics embedded with narrow-gap semiconductors can potentially use the traditionally wasted portion of solar energy that takes up ~49% of the sun light spectrum. [22] [23] Spacecraft, deep ocean instruments, and vacuum physics setups use narrow-gap semiconductors to achieve cryogenic cooling. [24] [25]

List of narrow-gap semiconductors

Name Chemical formula Groups Band gap (300 K)
Mercury cadmium telluride Hg1−xCdxTeII-VI0 to 1.5 eV
Mercury zinc telluride Hg1−xZnxTeII-VI0.15 to 2.25 eV
Lead selenide PbSeIV-VI0.27 eV
Lead(II) sulfide PbSIV-VI0.37 eV
Tellurium TeVI~0.3 eV
Lead telluride PbTeIV-VI0.32 eV
Magnetite Fe3O4Transition Metal-VI0.14 eV
Indium arsenide InAsIII-V0.354 eV
Indium antimonide InSbIII-V0.17 eV
Germanium GeIV0.67 eV
Gallium antimonide GaSbIII-V0.67 eV
Cadmium arsenide Cd3As2II-V0.5 to 0.6 eV
Bismuth telluride Bi2Te30.21 eV
Tin telluride SnTeIV-VI0.18 eV
Tin selenide SnSeIV-VI0.9 eV
Silver(I) selenide Ag2Se0.07 eV
Magnesium silicide Mg2SiII-IV0.79 eV [26]

See also

References

  1. Li, Xiao-Hui (2022). "Narrow-Bandgap Materials for Optoelectronics Applications" . Frontiers of Physics. 17 (1): 13304. Bibcode:2022FrPhy..1713304L. doi:10.1007/s11467-021-1055-z. S2CID   237652629.
  2. Chu, Junhao; Sher, Arden (2008). Physics and Properties of Narrow Gap Semiconductors. Springer. doi:10.1007/978-0-387-74801-6. ISBN   978-0-387-74743-9.
  3. Jones, Graham A.; Layer, David H.; Osenkowsky, Thomas G. (2007). National Association of Broadcasters Engineering Handbook. Taylor and Francis. p. 7. ISBN   978-1-136-03410-7.
  4. Avraham, M.; Nemirovsky, J.; Blank, T.; Golan, G.; Nemirovsky, Y. (2022). "Toward an Accurate IR Remote Sensing of Body Temperature Radiometer Based on a Novel IR Sensing System Dubbed Digital TMOS". Micromachines. 13 (5): 703. doi: 10.3390/mi13050703 . PMC   9145132 . PMID   35630174.
  5. Hapke B (19 January 2012). Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press. p. 416. ISBN   978-0-521-88349-8.
  6. Lovett, D. R. Semimetals and narrow-bandgap semiconductors; Pion Limited: London, 1977; Chapter 7.
  7. Inside Telecom Staff (30 July 2022). "How Can Photonic Chips Help to Create a Sustainable Digital Infrastructure?". Inside Telecom. Retrieved 20 September 2022.
  8. Awad, Ehab (October 2018). "Bidirectional Mode Slicing and Re-Combining for Mode Conversion in Planar Waveguides". IEEE Access. 6 (1): 55937. doi: 10.1109/ACCESS.2018.2873278 . S2CID   53043619.
  9. Vergyris, Panagiotis (16 June 2022). "Integrated photonics for quantum applications". Laser Focus World. Retrieved 20 September 2022.
  10. "Comprehensive Summary of Modulation Techniques for LiFi | LiFi Research". www.lifi.eng.ed.ac.uk. Retrieved 2018-01-16.
  11. "The Infrared Array Camera (IRAC)". Spitzer Space Telescope. NASA /JPL /Caltech. Archived from the original on 13 June 2010. Retrieved 13 January 2017.
  12. Szondy, David (28 August 2016). "Spitzer goes "Beyond" for final mission". New Atlas. Retrieved 13 January 2017.
  13. "Space in Images – 2002–06 – Meeting the team".
  14. "Space camera blazes new terahertz trails". Times Higher Education (THE). 2003-02-12. Retrieved 2023-08-04.
  15. Winner of the 2003/04 Research Councils' Business Plan Competition – 24 February 2004. epsrc.ac.uk. 27 February 2004
  16. Guillet, J. P.; Recur, B.; Frederique, L.; Bousquet, B.; Canioni, L.; Manek-Hönninger, I.; Desbarats, P.; Mounaix, P. (2014). "Review of Terahertz Tomography Techniques". Journal of Infrared, Millimeter, and Terahertz Waves. 35 (4): 382–411. Bibcode:2014JIMTW..35..382G. CiteSeerX   10.1.1.480.4173 . doi:10.1007/s10762-014-0057-0. S2CID   120535020.
  17. Mittleman, Daniel M.; Hunsche, Stefan; Boivin, Luc; Nuss, Martin C. (1997). "T-ray tomography" . Optics Letters. 22 (12): 904–906. Bibcode:1997OptL...22..904M. doi:10.1364/OL.22.000904. ISSN   1539-4794. PMID   18185701.
  18. Katayama, I.; Akai, R.; Bito, M.; Shimosato, H.; Miyamoto, K.; Ito, H.; Ashida, M. (2010). "Ultrabroadband terahertz generation using 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate single crystals" . Applied Physics Letters. 97 (2): 021105. Bibcode:2010ApPhL..97b1105K. doi:10.1063/1.3463452. ISSN   0003-6951.
  19. Dolgashev, Valery; Tantawi, Sami; Higashi, Yasuo; Spataro, Bruno (2010-10-25). "Geometric dependence of radio-frequency breakdown in normal conducting accelerating structures". Applied Physics Letters. 97 (17): 171501. Bibcode:2010ApPhL..97q1501D. doi:10.1063/1.3505339.
  20. Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X. (2015-10-06). "Terahertz-driven linear electron acceleration". Nature Communications. 6 (1): 8486. arXiv: 1411.4709 . Bibcode:2015NatCo...6.8486N. doi:10.1038/ncomms9486. PMC   4600735 . PMID   26439410.
  21. Jing, Chunguang (2016). "Dielectric Wakefield Accelerators". Reviews of Accelerator Science and Technology. 09 (6): 127–149. Bibcode:2016RvAST...9..127J. doi:10.1142/s1793626816300061.
  22. Poortmans, Jef. "IMEC website: Photovoltaic Stacks". Archived from the original on 2007-10-13. Retrieved 2008-02-17.
  23. "A new heat engine with no moving parts is as efficient as a steam turbine". MIT News | Massachusetts Institute of Technology. 13 April 2022. Retrieved 2022-04-13.
  24. Radebaugh, Ray (2009-03-31). "Cryocoolers: the state of the art and recent developments" . Journal of Physics: Condensed Matter. 21 (16): 164219. Bibcode:2009JPCM...21p4219R. doi:10.1088/0953-8984/21/16/164219. ISSN   0953-8984. PMID   21825399. S2CID   22695540.
  25. Cooper, Bernard E; Hadfield, Robert H (2022-06-28). "Viewpoint: Compact cryogenics for superconducting photon detectors". Superconductor Science and Technology. 35 (8): 080501. Bibcode:2022SuScT..35h0501C. doi: 10.1088/1361-6668/ac76e9 . ISSN   0953-2048. S2CID   249534834.
  26. Nelson, James T. (1955). "Chicago Section: 1. Electrical and optical properties of MgPSn and Mg2Si". American Journal of Physics. 23 (6). American Association of Physics Teachers (AAPT): 390. doi:10.1119/1.1934018. ISSN   0002-9505.

Further reading