National Spatial Reference System

Last updated

The National Spatial Reference System (NSRS), managed by the National Geodetic Survey (NGS), is a coordinate system that includes latitude, longitude, elevation, and other values. The NSRS consists of a National Shoreline, the NOAA CORS Network [1] (a system of Global Positioning System Continuously Operating Reference Stations), a network of permanently marked points, and a set of models that describe dynamic geophysical processes affecting spatial measurements. The system is based on the datums NAD 83 and NAVD 88. [2]

Contents

In 2024 or 2025,[ needs update ] the NSRS will be modernized with a focus on Global Navigation Satellite Systems (GNSS) and geoid use. It will use the following four frames of reference, each representing a tectonic plate: [3] [4]

Datum of 2022

The North American-Pacific Geopotential Datum of 2022 (NAPGD2022) is a new geodetic datum set to be produced by the U.S. National Geodetic Survey in 2024–2025 to improve the National Spatial Reference System (NSRS). [6] [7] It will replace the North American Datum of 1983 (NAD 83) and the North American Vertical Datum of 1988 (NAVD 88) with a new geometric reference frame and geopotential datum. [8] In association with this release, a new, time-dependent geoid model, GEOID2022, will also be released. [9] The release date for both of these was initially planned to be 2022, hence the names, although they have been delayed.

The new reference frames will rely primarily on GNSS, such as the Global Positioning System (GPS), as well as on a gravimetric geoid model resulting from NGS' Gravity for the Redefinition of the American Vertical Datum (GRAV-D) Project. These new reference frames are intended be easier to access and to maintain than NAD 83 and NAVD 88, which rely on physical survey marks that deteriorate over time. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Geodesy</span> Science of measuring the shape, orientation, and gravity of the Earth and other astronomical bodies

Geodesy is the science of measuring and representing the geometry, gravity, and spatial orientation of the Earth in temporally varying 3D. It is called planetary geodesy when studying other astronomical bodies, such as planets or circumplanetary systems.

<span class="mw-page-title-main">Geoid</span> Ocean shape without winds and tides

The geoid is the shape that the ocean surface would take under the influence of the gravity of Earth, including gravitational attraction and Earth's rotation, if other influences such as winds and tides were absent. This surface is extended through the continents. According to Gauss, who first described it, it is the "mathematical figure of the Earth", a smooth but irregular surface whose shape results from the uneven distribution of mass within and on the surface of Earth. It can be known only through extensive gravitational measurements and calculations. Despite being an important concept for almost 200 years in the history of geodesy and geophysics, it has been defined to high precision only since advances in satellite geodesy in the late 20th century.

<span class="mw-page-title-main">World Geodetic System</span> Geodetic reference system

The World Geodetic System (WGS) is a standard used in cartography, geodesy, and satellite navigation including GPS. The current version, WGS 84, defines an Earth-centered, Earth-fixed coordinate system and a geodetic datum, and also describes the associated Earth Gravitational Model (EGM) and World Magnetic Model (WMM). The standard is published and maintained by the United States National Geospatial-Intelligence Agency.

<span class="mw-page-title-main">U.S. National Geodetic Survey</span> U.S. federal surveying and mapping agency

The National Geodetic Survey (NGS) is a United States federal agency based in Washington, D.C. that defines and manages a national coordinate system, providing the foundation for transportation and communication, mapping and charting, and a large number of science and engineering applications. Since its founding in 1970, it has been part of the National Oceanic and Atmospheric Administration (NOAA), a division within the United States Department of Commerce.

<span class="mw-page-title-main">International Terrestrial Reference System and Frame</span> World spatial reference system co-rotating with the Earth in its diurnal motion in space

The International Terrestrial Reference System (ITRS) describes procedures for creating reference frames suitable for use with measurements on or near the Earth's surface. This is done in much the same way that a physical standard might be described as a set of procedures for creating a realization of that standard. The ITRS defines a geocentric system of coordinates using the SI system of measurement.

The National Ocean Service (NOS) is an office within the U.S. Department of Commerce, National Oceanic and Atmospheric Administration (NOAA). It is responsible for preserving and enhancing the nation's coastal resources and ecosystems along approximately 95,000 miles (153,000 km) of shoreline, that is bordering 3,500,000 square miles (9,100,000 km2) of coastal, Great Lakes and ocean waters. Its mission is to "provide science-based solutions through collaborative partnerships to address evolving economic, environmental, and social pressures on our oceans and coasts." The office works with partnered agencies to ensure that ocean and coastal areas are safe, healthy, and productive. It`s projects focus on working to ensure safe and efficient marine transportation, promoting the protection of coastal communities, conserving marine and coastal places. It employs 1,700 scientists, natural resource managers, and specialists in many different fields. The National Ocean Service was previously known as the National Ocean Survey until it was renamed in 1983.

<span class="mw-page-title-main">Vertical deflection</span> Measure of the downward gravitational forces shift due to nearby mass

The vertical deflection (VD) or deflection of the vertical (DoV), also known as deflection of the plumb line and astro-geodetic deflection, is a measure of how far the gravity direction at a given point of interest is rotated by local mass anomalies such as nearby mountains. They are widely used in geodesy, for surveying networks and for geophysical purposes.

<span class="mw-page-title-main">Geodetic datum</span> Reference frame for measuring location

A geodetic datum or geodetic system is a global datum reference or reference frame for precisely representing the position of locations on Earth or other planetary bodies by means of geodetic coordinates. Datums are crucial to any technology or technique based on spatial location, including geodesy, navigation, surveying, geographic information systems, remote sensing, and cartography. A horizontal datum is used to measure a location across the Earth's surface, in latitude and longitude or another coordinate system; a vertical datum is used to measure the elevation or depth relative to a standard origin, such as mean sea level (MSL). Since the rise of the global positioning system (GPS), the ellipsoid and datum WGS 84 it uses has supplanted most others in many applications. The WGS 84 is intended for global use, unlike most earlier datums.

<span class="mw-page-title-main">Satellite geodesy</span> Measurement of the Earth using satellites

Satellite geodesy is geodesy by means of artificial satellites—the measurement of the form and dimensions of Earth, the location of objects on its surface and the figure of the Earth's gravity field by means of artificial satellite techniques. It belongs to the broader field of space geodesy. Traditional astronomical geodesy is not commonly considered a part of satellite geodesy, although there is considerable overlap between the techniques.

<span class="mw-page-title-main">Elevation</span> Height of a geographic location above a fixed reference point

The elevation of a geographic location is its height above or below a fixed reference point, most commonly a reference geoid, a mathematical model of the Earth's sea level as an equipotential gravitational surface . The term elevation is mainly used when referring to points on the Earth's surface, while altitude or geopotential height is used for points above the surface, such as an aircraft in flight or a spacecraft in orbit, and depth is used for points below the surface.

Geodetic astronomy or astronomical geodesy (astro-geodesy) is the application of astronomical methods into geodetic networks and other technical projects of geodesy.

The orthometric height is the vertical distance H along the plumb line from a point of interest to a reference surface known as the geoid, the vertical datum that approximates mean sea level. Orthometric height is one of the scientific formalizations of a laypersons' "height above sea level", along with other types of heights in Geodesy.

<span class="mw-page-title-main">North American Datum</span> Reference frame for geodesy on the continent

The North American Datum (NAD) is the horizontal datum now used to define the geodetic network in North America. A datum is a formal description of the shape of the Earth along with an "anchor" point for the coordinate system. In surveying, cartography, and land-use planning, two North American Datums are in use for making lateral or "horizontal" measurements: the North American Datum of 1927 (NAD 27) and the North American Datum of 1983 (NAD 83). Both are geodetic reference systems based on slightly different assumptions and measurements.

<span class="mw-page-title-main">Earth Gravitational Model</span> Geopotential descriptions used by the US DoD

The Earth Gravitational Models (EGM) are a series of geopotential models of the Earth published by the National Geospatial-Intelligence Agency (NGA). They are used as the geoid reference in the World Geodetic System.

<span class="mw-page-title-main">National Geodetic Vertical Datum of 1929</span> Vertical datum in the United States

The National Geodetic Vertical Datum of 1929 is the official name since 1973 of the vertical datum established for vertical control surveying in the United States of America by the General Adjustment of 1929. Originally known as Sea Level Datum of 1929, NGVD 29 was determined and published by the United States Coast and Geodetic Survey and used to measure the elevation of a point above and depression below mean sea level (MSL).

<span class="mw-page-title-main">North American Vertical Datum of 1988</span> Vertical datum for orthometric heights

The North American Vertical Datum of 1988 is the vertical datum for orthometric heights established for vertical control surveying in the United States of America based upon the General Adjustment of the North American Datum of 1988.

<span class="mw-page-title-main">Earth ellipsoid</span> Geometric figure which approximates the Earths shape

An Earth ellipsoid or Earth spheroid is a mathematical figure approximating the Earth's form, used as a reference frame for computations in geodesy, astronomy, and the geosciences. Various different ellipsoids have been used as approximations.

<span class="mw-page-title-main">Vertical datum</span> Reference surface for vertical positions

In geodesy, surveying, hydrography and navigation, vertical datum or altimetric datum, is a reference coordinate surface used for vertical positions, such as the elevations of Earth-bound features and altitudes of satellite orbits and in aviation. In planetary science, vertical datums are also known as zero-elevation surface or zero-level reference.

Regional Reference Frame Sub-Commission for Europe (EUREF) is the sub-commission of the International Association of Geodesy (IAG), part of the Sub-Commission 1.3, under IAG Commission 1 . EUREF deals with the definition, realization and maintenance of the European Geodetic Reference Frame. The goal of EUREF is to establish a unified geodetic datum (ETRS89) and a consistent network of reference stations (EPN) throughout Europe. EUREF was founded in 1987 at the IUGG General Assembly held in Vancouver.

<span class="mw-page-title-main">Vertical Offshore Reference Frames</span> UK and Irish hydrographic vertical datum

Vertical Offshore Reference Frames (VORF) is a set of high resolution surface models, published and maintained by the UK Hydrographic Office, which together define a vertical datum for hydrographic surveying and charting in the United Kingdom and Ireland.

References

Attribution: contains public domain material copied from ngs.noaa.gov

  1. "NGS - NCN Homepage". geodesy.noaa.gov. Retrieved 2022-04-19.
  2. "The National Spatial Reference System". National Geodetic Survey. Retrieved April 3, 2013.
  3. "How to Transition to the United States 2022 National Coordinate System Without Getting Left Behind" (PDF). United Nations Office for Outer Space Affairs.
  4. Smith, Dru; Roman, Dan; Hilla, Steve. "NOAA Technical Report NOS NGS 62: Blueprint for 2022, Part 1: Geometric Coordinates" (PDF). National Geodetic Survey. Retrieved July 11, 2018.
  5. "NGS Datasheet for marker DH4418 @ Chamberlain, SD".
  6. US Department of Commerce, NOAA; US Department of Commerce, NOAA. "Delayed Release of Modernized NSRS, New Datums". geodesy.noaa.gov. Retrieved 2022-02-01.
  7. US Department of Commerce, National Oceanic and Atmospheric Administration. "Frequently Asked Questions - FAQ - New Datums - National Geodetic Survey". geodesy.noaa.gov. Retrieved 2022-02-01.
  8. 1 2 US Department of Commerce, National Oceanic and Atmospheric Administration. "New Datums - National Geodetic Survey". www.ngs.noaa.gov. Retrieved 2022-02-01.
  9. US Department of Commerce, National Oceanic and Atmospheric Administration. "Naming Convention - New Datums - National Geodetic Survey". geodesy.noaa.gov. Retrieved 2024-04-16.