Node graph architecture is a software design structured around the notion of a node graph. Both the source code and the user interface are designed around the editing and composition (or linking) of atomic functional units. Node graphs are a type of visual programming language.
The source code for the software application is organized into atomic functional units called nodes. This is typically done using classes derived from a base class for all nodes. Each node can have inputs and outputs, which are typically also implemented using classes derived from base classes for all inputs and all outputs. Outputs and inputs can refer to each other, typically by holding pointers to instances of other outputs or inputs. When a node executes its functionality, it retrieves its inputs by following the pointers stored in its inputs to retrieve data output by other nodes. The node then executes its operation on these inputs to produce its own outputs. The ability to link nodes together in this way allows complex tasks or problems to be broken down into atomic nodal units that are easier to understand.
The user interface of the software application will often visually display the node graph to the user. This is often accomplished by using the GPU to perform the rendering which is subsequently displayed on the desktop to the user. Common APIs for the GPU are OpenGL and DirectX. Nodes are often drawn as rectangles, and connections between nodes are drawn with lines or splines.
The use of node graph architecture started in the 1960s.[ citation needed ] Today the use of node graphs has exploded. The fields of graphics, games, and machine learning are the main adopters of this software design with the majority of tools using node graph architecture.[ citation needed ]
To this day, there is some debate as to the benefits of visual programming and node graph architecture. Advocates highlight how the abstraction that node graphs provide makes the tool easier to use. Critics highlight how visual programming is too restrictive and how they must resort to modifying source code or scripts to accomplish their tasks.
There is an ongoing effort by Eric Hosick on Twitter to collect snapshots of all node graph user interfaces in most software applications. The effort attempts to document the evolution and explosion of node graph user interfaces starting from their initial roots. This visual history is hosted on a blog page called Visual Programming Languages - Snapshots. Work leading to node graph architectures and visual programming seems to have started in the 1960s, in the area known as "man-machine communications".
In William Robert Sutherland's MIT thesis (1966) "Online Graphical Specification of Procedures", he describes and analyses topics around a 2D pictorial language. This is one of the first investigations in dataflow-based workflows or programs. Since then his thesis has been used as "prior art" in order to quash lawsuits about dataflow ideas today. His work is often thought to have led the way to what is known as computer-aided design (CAD) today.
In 1969, T. O. Ellis, J. F. Heafner, and W. L. Sibley published a paper concerning a Graphical Input Language (GRAIL). Their work was related to the RAND Tablet which began with research on Sketchpad, a system where users could write computer commands directly on a tablet, conducted by Ivan Sutherland. The GRAIL system used a flowchart-based graphical programming language and could recognize handwritten letters and gestures. [2] Alan Kay has given a number of demos of the GRAIL system, however, he was not involved with the creation of the system.
Some of the more recent uses of node graph architectures started around 2005. Node graphs in this time frame start to develop paradigms to deal with complexity in the node graph. The complexity arose as the number of nodes and links in the graph increased. One of the main ideas dealing with complexity was the concept of a group or package node which hid nodes inside of itself, only exposing the inputs and outputs of the group.
In the paper Hierarchical Small Worlds in Software Architecture [3] author Sergi Valverde argues that most large software systems are built in a modular and hierarchical fashion, and that node graphs can be used to analyze large software systems. Many other software analysis papers often use node graphs to analyze large software systems suggesting that node graphs are good models of the internal structure and operation of the software. [4]
Node graphs are a subset of the broader class of visual programming languages. Node graphs allow you to design programs in a visual and structured way instead of through the authoring of source code. In the film and video game industries node graphs are synonymous with visual programming. There is currently some debate on the power, abstraction, and need of node graphs and visual programming languages.
This remains an active area of debate with new discussions occurring in open forums to this day. The following are a few of the largest discussions to date.
Research studies tend to shed more details on these discussions and highlight more of the advantages and disadvantages of node graphs. They indicate that node graphs and visual programming are easy to understand for new users, but as the users move to more complex tasks they often need to resort to authoring textual source code. [7] Another survey focuses on peoples beliefs on the cognitive effects of visual programming, in which they found that professional programmers are the most skeptical of visual programming. [8] Other studies have shown in psychological experiments that visual programming can have significant positive effects on performance in cognitive tasks. [9]
A node graph in the context of software architecture refers to an organization of software functionality into atomic units known as nodes, and where nodes can be connected to each other via links. The manipulation of nodes and links in the node graph can be often be accomplished through a programmable API or through a visual interface by using the mouse. In the diagram above, the node graph appears on the right-hand side.
In modern-day usage, the term "node graph" is an open compound word. However, in older software it was referred to as a "nodegraph", a closed compound word.
Nodes perform some type of computation. They encapsulate this executable functionality and will often take inputs and produce outputs as a by-product of execution. A simple example is a node that adds two numbers together. The inputs are the two numbers to add and the output is the sum of the two numbers.
Nodes are analogous to mathematical functions of the following form.
where is the node's computation, is a vector of the node's input values and is a vector of the node's output values.
Visually nodes are often represented by rectangles. However, this is not a convention that is followed by all applications. In the diagram above there are three nodes labeled "Video", "Add Star" and "Add Circle".
Nodes often have additional parameters, that define their execution. These parameters are backed by data types in the node's source code.
Mathematically they can be thought of as additional input values to the node's compute function. The only difference is that these values are controlled directly by the user instead of being output by another node as a by-product of its execution. For example, in the simple example above regarding a node that adds two numbers, we can introduce a bias parameter on the node so that the node can add an extra fixed number onto the sum.
Visually the node's parameters are often exposed after the user clicks on the node. This helps to reduce visually cluttering the node graph. In the diagram above we see a parameter window opening up beside the "Add Star" node.
Nodes often have inputs and outputs, as discussed above. Inputs and outputs are backed by data types in the node's source code. Inputs and outputs are crucial to storing values before and after the node's execution.
Mathematically the node's inputs and outputs are analogous to input and output values of functions.
where is the node's computation, is a vector of the node's input values and is a vector of the node's output values.
Visually the inputs and outputs of nodes are often represented with circles.
Links transfer the values stored in data types between different nodes. They are analogous to mathematical composition. For example, if node A is feeding its outputs to node B, this can be represented mathematically as follows.
where and are the operations performed by node B and node A, is a vector of the node A's input values and is a vector of the node B's output values.
The type of a node indicates which compute operation it will perform when executed. There are often many different node types participating in the node graph. The following are some examples:
The most important node type for managing complexity is the group node. This node type does not execute software code in the same as other nodes. This node simply groups a subset of connected nodes together and manages the inputs and outputs into or out of the group. This hides complexity inside of the group nodes and limits their coupling with other nodes outside the group. This leads to a hierarchy where smaller graphs are embedded in group nodes. The following are examples of group nodes which are used to group a subset of connected nodes and to help simplify the graph.
Software applications using node graph architecture will typically expose the node graph visually or graphically to the user, allowing the user to make changes to the node graph. Using the mouse, users will typically be able to:
With the increasing usage of node graphs, there is currently increased attention on creating user-friendly interfaces. Often these new interfaces are being designed by user interface specialists and graphical designers. The following are some user interfaces designed by artists and designers.
Many theoretical results from graph theory apply to node graphs, especially with regards to topology. This subject area where Nodes are linked together to form graphs is well studied.
One particular area of concern during node graph evaluation is cycles. When cycles are present in the node graph, the evaluation never ends as nodes are continually executed by following links. To avoid these problems many node graphs architectures restrict themselves to a subset of graphs known as directed acyclic graphs.
The use of node graph architecture in software design is especially popular in the film and video game industries. The diagram above shows a simplified user interface for an artistic tool for editing and creating videos. The nodes are represented as rectangles and are connected to each other through curved lines (Bézier curves). In this software's operational model, a video sequence is being passed through the lines onto the next node, and each node performs some additional modifications to the video sequence. In this example one video is translated in 2D, another is pixelated, and finally, both streams are merged.
The following are some examples of software using node graph architecture in the film and video game industries.
The use of node graph architecture in software design has recently become very popular in machine learning applications. The diagram above shows a simple neural network composed of 3 layers. The 3 layers are the input layer, the hidden layer, and the output layer. The elements in each layer are weights and are connected to weights in other layers. During inference, the machine learning algorithm evaluates the weights in the output layer through a sequence of functional evaluations over the weights from previous layers. During training, the machine learning algorithm uses optimization to minimize a loss function, where the loss function depends on the difference between the weights in the output layer and the expected values. Node graphs are used to visualize, configure and debug these neural network layers.
The following are examples of machine learning software using node graph architecture without a graphical interface for the node graphs.
The following are some examples of machine learning software using node graph architecture.
{{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help)Digital compositing is the process of digitally assembling multiple images to make a final image, typically for print, motion pictures or screen display. It is the digital analogue of optical film compositing. It's part of VFX processing.
In the industrial design field of human–computer interaction, a user interface (UI) is the space where interactions between humans and machines occur. The goal of this interaction is to allow effective operation and control of the machine from the human end, while the machine simultaneously feeds back information that aids the operators' decision-making process. Examples of this broad concept of user interfaces include the interactive aspects of computer operating systems, hand tools, heavy machinery operator controls and process controls. The design considerations applicable when creating user interfaces are related to, or involve such disciplines as, ergonomics and psychology.
The Ford–Fulkerson method or Ford–Fulkerson algorithm (FFA) is a greedy algorithm that computes the maximum flow in a flow network. It is sometimes called a "method" instead of an "algorithm" as the approach to finding augmenting paths in a residual graph is not fully specified or it is specified in several implementations with different running times. It was published in 1956 by L. R. Ford Jr. and D. R. Fulkerson. The name "Ford–Fulkerson" is often also used for the Edmonds–Karp algorithm, which is a fully defined implementation of the Ford–Fulkerson method.
In machine learning, the perceptron is an algorithm for supervised learning of binary classifiers. A binary classifier is a function which can decide whether or not an input, represented by a vector of numbers, belongs to some specific class. It is a type of linear classifier, i.e. a classification algorithm that makes its predictions based on a linear predictor function combining a set of weights with the feature vector.
In parallel computer architectures, a systolic array is a homogeneous network of tightly coupled data processing units (DPUs) called cells or nodes. Each node or DPU independently computes a partial result as a function of the data received from its upstream neighbours, stores the result within itself and passes it downstream. Systolic arrays were first used in Colossus, which was an early computer used to break German Lorenz ciphers during World War II. Due to the classified nature of Colossus, they were independently invented or rediscovered by H. T. Kung and Charles Leiserson who described arrays for many dense linear algebra computations for banded matrices. Early applications include computing greatest common divisors of integers and polynomials. They are sometimes classified as multiple-instruction single-data (MISD) architectures under Flynn's taxonomy, but this classification is questionable because a strong argument can be made to distinguish systolic arrays from any of Flynn's four categories: SISD, SIMD, MISD, MIMD, as discussed later in this article.
In computing, a visual programming language, also known as diagrammatic programming, graphical programming or block coding, is a programming language that lets users create programs by manipulating program elements graphically rather than by specifying them textually. A VPL allows programming with visual expressions, spatial arrangements of text and graphic symbols, used either as elements of syntax or secondary notation. For example, many VPLs are based on the idea of "boxes and arrows", where boxes or other screen objects are treated as entities, connected by arrows, lines or arcs which represent relations. VPLs are generally the basis of low-code development platforms.
Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is a graphical system design and developmentplatform produced and distributed by National Instruments, based on a programming environment that uses a visual programming language. It is widely used for data acquisition, instrument control, and industrial automation. It provides tools for designing and deploying complex test and measurement systems.
In machine learning, backpropagation is a gradient estimation method commonly used for training a neural network to compute its parameter updates.
String diagrams are a formal graphical language for representing morphisms in monoidal categories, or more generally 2-cells in 2-categories. They are a prominent tool in applied category theory. When interpreted in the monoidal category of vector spaces and linear maps with the tensor product, string diagrams are called tensor networks or Penrose graphical notation. This has led to the development of categorical quantum mechanics where the axioms of quantum theory are expressed in the language of monoidal categories.
The Common Lisp Interface Manager (CLIM) is a Common Lisp-based programming interface for creating user interfaces, i.e., graphical user interfaces (GUIs). It provides an application programming interface (API) to user interface facilities for the programming language Lisp. It is a fully object-oriented programming user interface management system, using the Common Lisp Object System (CLOS) and is based on the mechanism of stream input and output. There are also facilities for output device independence. It is descended from the GUI system Dynamic Windows of Symbolics' Lisp machines between 1988 and 1993.
... you can check out Common Lisp Interface Manager (CLIM). A descendant of the Symbolics Lisp machines GUI framework, CLIM is powerful but complex. Although many commercial Common Lisp implementations actually support it, it doesn't seem to have seen a lot of use. But in the past couple years, an open-source implementation of CLIM, McCLIM – now hosted at Common-Lisp.net – has been picking up steam lately, so we may be on the verge of a CLIM renaissance. – From Practical Common Lisp
In software engineering, graphical user interface testing is the process of testing a product's graphical user interface (GUI) to ensure it meets its specifications. This is normally done through the use of a variety of test cases.
A signal-flow graph or signal-flowgraph (SFG), invented by Claude Shannon, but often called a Mason graph after Samuel Jefferson Mason who coined the term, is a specialized flow graph, a directed graph in which nodes represent system variables, and branches represent functional connections between pairs of nodes. Thus, signal-flow graph theory builds on that of directed graphs, which includes as well that of oriented graphs. This mathematical theory of digraphs exists, of course, quite apart from its applications.
In game theory, the common ways to describe a game are the normal form and the extensive form. The graphical form is an alternate compact representation of a game using the interaction among participants.
Reo is a domain-specific language for programming and analyzing coordination protocols that compose individual processes into full systems, broadly construed. Examples of classes of systems that can be composed with Reo include component-based systems, service-oriented systems, multithreading systems, biological systems, and cryptographic protocols. Reo has a graphical syntax in which every Reo program, called a connector or circuit, is a labeled directed hypergraph. Such a graph represents the data-flow among the processes in the system. Reo has formal semantics, which stand at the basis of its various formal verification techniques and compilation tools.
This glossary of computer hardware terms is a list of definitions of terms and concepts related to computer hardware, i.e. the physical and structural components of computers, architectural issues, and peripheral devices.
Extension neural network is a pattern recognition method found by M. H. Wang and C. P. Hung in 2003 to classify instances of data sets. Extension neural network is composed of artificial neural network and extension theory concepts. It uses the fast and adaptive learning capability of neural network and correlation estimation property of extension theory by calculating extension distance.
ENN was used in:
SAMSON is a computer software platform for molecular design being developed by OneAngstrom and previously by the NANO-D group at the French Institute for Research in Computer Science and Automation (INRIA).
An artificial neural network (ANN) combines biological principles with advanced statistics to solve problems in domains such as pattern recognition and game-play. ANNs adopt the basic model of neuron analogues connected to each other in a variety of ways.
A graph neural network (GNN) belongs to a class of artificial neural networks for processing data that can be represented as graphs.
In neural networks, a pooling layer is a kind of network layer that downsamples and aggregates information that is dispersed among many vectors into fewer vectors. It has several uses. It removes redundant information, reducing the amount of computation and memory required, makes the model more robust to small variations in the input, and increases the receptive field of neurons in later layers in the network.
{{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help)