In mathematics, the norm residue isomorphism theorem is a long-sought result relating Milnor K-theory and Galois cohomology. The result has a relatively elementary formulation and at the same time represents the key juncture in the proofs of many seemingly unrelated theorems from abstract algebra, theory of quadratic forms, algebraic K-theory and the theory of motives. The theorem asserts that a certain statement holds true for any prime and any natural number . John Milnor [1] speculated that this theorem might be true for and all , and this question became known as Milnor's conjecture. The general case was conjectured by Spencer Bloch and Kazuya Kato [2] and became known as the Bloch–Kato conjecture or the motivic Bloch–Kato conjecture to distinguish it from the Bloch–Kato conjecture on values of L-functions. [3] The norm residue isomorphism theorem was proved by Vladimir Voevodsky using a number of highly innovative results of Markus Rost.
For any integer ℓ invertible in a field there is a map where denotes the Galois module of ℓ-th roots of unity in some separable closure of k. It induces an isomorphism . The first hint that this is related to K-theory is that is the group K1(k). Taking the tensor products and applying the multiplicativity of étale cohomology yields an extension of the map to maps:
These maps have the property that, for every element a in , vanishes. This is the defining relation of Milnor K-theory. Specifically, Milnor K-theory is defined to be the graded parts of the ring:
where is the tensor algebra of the multiplicative group and the quotient is by the two-sided ideal generated by all elements of the form . Therefore the map factors through a map:
This map is called the Galois symbol or norm residue map. [4] [5] [6] Because étale cohomology with mod-ℓ coefficients is an ℓ-torsion group, this map additionally factors through .
The norm residue isomorphism theorem (or Bloch–Kato conjecture) states that for a field k and an integer ℓ that is invertible in k, the norm residue map
from Milnor K-theory mod-ℓ to étale cohomology is an isomorphism. The case ℓ = 2 is the Milnor conjecture, and the case n = 2 is the Merkurjev–Suslin theorem. [6] [7]
The étale cohomology of a field is identical to Galois cohomology, so the conjecture equates the ℓth cotorsion (the quotient by the subgroup of ℓ-divisible elements) of the Milnor K-group of a field k with the Galois cohomology of k with coefficients in the Galois module of ℓth roots of unity. The point of the conjecture is that there are properties that are easily seen for Milnor K-groups but not for Galois cohomology, and vice versa; the norm residue isomorphism theorem makes it possible to apply techniques applicable to the object on one side of the isomorphism to the object on the other side of the isomorphism.
The case when n is 0 is trivial, and the case when n = 1 follows easily from Hilbert's Theorem 90. The case n = 2 and ℓ = 2 was proved by ( Merkurjev 1981 ) . An important advance was the case n = 2 and ℓ arbitrary. This case was proved by ( Merkurjev & Suslin 1982 ) and is known as the Merkurjev–Suslin theorem. Later, Merkurjev and Suslin, and independently, Rost, proved the case n = 3 and ℓ = 2( Merkurjev & Suslin 1991 )( Rost 1986 ) .
The name "norm residue" originally referred to the Hilbert symbol , which takes values in the Brauer group of k (when the field contains all ℓ-th roots of unity). Its usage here is in analogy with standard local class field theory and is expected to be part of an (as yet undeveloped) "higher" class field theory.
The norm residue isomorphism theorem implies the Quillen–Lichtenbaum conjecture. It is equivalent to a theorem whose statement was once referred to as the Beilinson–Lichtenbaum conjecture.
Milnor's conjecture was proved by Vladimir Voevodsky. [8] [9] [10] [11] Later Voevodsky proved the general Bloch–Kato conjecture. [12] [13]
The starting point for the proof is a series of conjectures due to Lichtenbaum (1983) and Beilinson (1987) . They conjectured the existence of motivic complexes, complexes of sheaves whose cohomology was related to motivic cohomology. Among the conjectural properties of these complexes were three properties: one connecting their Zariski cohomology to Milnor's K-theory, one connecting their etale cohomology to cohomology with coefficients in the sheaves of roots of unity and one connecting their Zariski cohomology to their etale cohomology. These three properties implied, as a very special case, that the norm residue map should be an isomorphism. The essential characteristic of the proof is that it uses the induction on the "weight" (which equals the dimension of the cohomology group in the conjecture) where the inductive step requires knowing not only the statement of Bloch-Kato conjecture but the much more general statement that contains a large part of the Beilinson-Lichtenbaum conjectures. It often occurs in proofs by induction that the statement being proved has to be strengthened in order to prove the inductive step. In this case the strengthening that was needed required the development of a very large amount of new mathematics.
The earliest proof of Milnor's conjecture is contained in a 1995 preprint of Voevodsky [8] and is inspired by the idea that there should be algebraic analogs of Morava K-theory (these algebraic Morava K-theories were later constructed by Simone Borghesi [14] ). In a 1996 preprint, Voevodsky was able to remove Morava K-theory from the picture by introducing instead algebraic cobordisms and using some of their properties that were not proved at that time (these properties were proved later). The constructions of 1995 and 1996 preprints are now known to be correct but the first completed proof of Milnor's conjecture used a somewhat different scheme.
It is also the scheme that the proof of the full Bloch–Kato conjecture follows. It was devised by Voevodsky a few months after the 1996 preprint appeared. Implementing this scheme required making substantial advances in the field of motivic homotopy theory as well as finding a way to build algebraic varieties with a specified list of properties. From the motivic homotopy theory the proof required the following:
The first two constructions were developed by Voevodsky by 2003. Combined with the results that had been known since late 1980s, they were sufficient to reprove the Milnor conjecture.
Also in 2003, Voevodsky published on the web a preprint that nearly contained a proof of the general theorem. It followed the original scheme but was missing the proofs of three statements. Two of these statements were related to the properties of the motivic Steenrod operations and required the third fact above, while the third one required then-unknown facts about "norm varieties". The properties that these varieties were required to have had been formulated by Voevodsky in 1997, and the varieties themselves had been constructed by Markus Rost in 1998–2003. The proof that they have the required properties was completed by Andrei Suslin and Seva Joukhovitski in 2006.
The third fact above required the development of new techniques in motivic homotopy theory. The goal was to prove that a functor, which was not assumed to commute with limits or colimits, preserved weak equivalences between objects of a certain form. One of the main difficulties there was that the standard approach to the study of weak equivalences is based on Bousfield–Quillen factorization systems and model category structures, and these were inadequate. Other methods had to be developed, and this work was completed by Voevodsky only in 2008.[ citation needed ]
In the course of developing these techniques, it became clear that the first statement used without proof in Voevodsky's 2003 preprint is false. The proof had to be modified slightly to accommodate the corrected form of that statement. While Voevodsky continued to work out the final details of the proofs of the main theorems about motivic Eilenberg–MacLane spaces, Charles Weibel invented an approach to correct the place in the proof that had to modified. Weibel also published in 2009 a paper that contained a summary of Voevodsky's constructions combined with the correction that he discovered. [15]
Let X be a smooth variety over a field containing . Beilinson and Lichtenbaum conjectured that the motivic cohomology group is isomorphic to the étale cohomology group when p≤q. This conjecture has now been proven, and is equivalent to the norm residue isomorphism theorem.
Vladimir Alexandrovich Voevodsky was a Russian-American mathematician. His work in developing a homotopy theory for algebraic varieties and formulating motivic cohomology led to the award of a Fields Medal in 2002. He is also known for the proof of the Milnor conjecture and motivic Bloch–Kato conjectures and for the univalent foundations of mathematics and homotopy type theory.
In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.
In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.
Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers.
Motivic cohomology is an invariant of algebraic varieties and of more general schemes. It is a type of cohomology related to motives and includes the Chow ring of algebraic cycles as a special case. Some of the deepest problems in algebraic geometry and number theory are attempts to understand motivic cohomology.
In abstract algebra, Hilbert's Theorem 90 (or Satz 90) is an important result on cyclic extensions of fields (or to one of its generalizations) that leads to Kummer theory. In its most basic form, it states that if L/K is an extension of fields with cyclic Galois group G = Gal(L/K) generated by an element and if is an element of L of relative norm 1, that is
In mathematics, Milnor K-theory is an algebraic invariant defined by John Milnor as an attempt to study higher algebraic K-theory in the special case of fields. It was hoped this would help illuminate the structure for algebraic K-theory and give some insight about its relationships with other parts of mathematics, such as Galois cohomology and the Grothendieck–Witt ring of quadratic forms. Before Milnor K-theory was defined, there existed ad-hoc definitions for and . Fortunately, it can be shown Milnor K-theory is a part of algebraic K-theory, which in general is the easiest part to compute.
In algebraic geometry, a Weil cohomology or Weil cohomology theory is a cohomology satisfying certain axioms concerning the interplay of algebraic cycles and cohomology groups. The name is in honor of André Weil. Any Weil cohomology theory factors uniquely through the category of Chow motives, but the category of Chow motives itself is not a Weil cohomology theory, since it is not an abelian category.
In number theory and algebraic geometry, the Tate conjecture is a 1963 conjecture of John Tate that would describe the algebraic cycles on a variety in terms of a more computable invariant, the Galois representation on étale cohomology. The conjecture is a central problem in the theory of algebraic cycles. It can be considered an arithmetic analog of the Hodge conjecture.
In mathematics, an Azumaya algebra is a generalization of central simple algebras to -algebras where need not be a field. Such a notion was introduced in a 1951 paper of Goro Azumaya, for the case where is a commutative local ring. The notion was developed further in ring theory, and in algebraic geometry, where Alexander Grothendieck made it the basis for his geometric theory of the Brauer group in Bourbaki seminars from 1964–65. There are now several points of access to the basic definitions.
In mathematics, specifically in algebraic geometry and algebraic topology, the Lefschetz hyperplane theorem is a precise statement of certain relations between the shape of an algebraic variety and the shape of its subvarieties. More precisely, the theorem says that for a variety X embedded in projective space and a hyperplane section Y, the homology, cohomology, and homotopy groups of X determine those of Y. A result of this kind was first stated by Solomon Lefschetz for homology groups of complex algebraic varieties. Similar results have since been found for homotopy groups, in positive characteristic, and in other homology and cohomology theories.
In algebraic geometry, the Chow groups of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.
In mathematics, a Pfister form is a particular kind of quadratic form, introduced by Albrecht Pfister in 1965. In what follows, quadratic forms are considered over a field F of characteristic not 2. For a natural number n, an n-fold Pfister form over F is a quadratic form of dimension 2n that can be written as a tensor product of quadratic forms
In algebraic geometry, the Nisnevich topology, sometimes called the completely decomposed topology, is a Grothendieck topology on the category of schemes which has been used in algebraic K-theory, A¹ homotopy theory, and the theory of motives. It was originally introduced by Yevsey Nisnevich, who was motivated by the theory of adeles.
In algebraic geometry and algebraic topology, branches of mathematics, A1homotopy theory or motivic homotopy theory is a way to apply the techniques of algebraic topology, specifically homotopy, to algebraic varieties and, more generally, to schemes. The theory is due to Fabien Morel and Vladimir Voevodsky. The underlying idea is that it should be possible to develop a purely algebraic approach to homotopy theory by replacing the unit interval [0, 1], which is not an algebraic variety, with the affine line A1, which is. The theory has seen spectacular applications such as Voevodsky's construction of the derived category of mixed motives and the proof of the Milnor and Bloch-Kato conjectures.
In mathematics, p-adic Hodge theory is a theory that provides a way to classify and study p-adic Galois representations of characteristic 0 local fields with residual characteristic p. The theory has its beginnings in Jean-Pierre Serre and John Tate's study of Tate modules of abelian varieties and the notion of Hodge–Tate representation. Hodge–Tate representations are related to certain decompositions of p-adic cohomology theories analogous to the Hodge decomposition, hence the name p-adic Hodge theory. Further developments were inspired by properties of p-adic Galois representations arising from the étale cohomology of varieties. Jean-Marc Fontaine introduced many of the basic concepts of the field.
In mathematics, the Quillen–Lichtenbaum conjecture is a conjecture relating étale cohomology to algebraic K-theory introduced by Quillen, who was inspired by earlier conjectures of Lichtenbaum (1973). Kahn (1997) and Rognes & Weibel (2000) proved the Quillen–Lichtenbaum conjecture at the prime 2 for some number fields. Voevodsky, using some important results of Markus Rost, has proved the Bloch–Kato conjecture, which implies the Quillen–Lichtenbaum conjecture for all primes.
Aleksandr Sergeyevich Merkurjev is a Russian-American mathematician, who has made major contributions to the field of algebra. Currently Merkurjev is a professor at the University of California, Los Angeles.
Charles Alexander Weibel is an American mathematician working on algebraic K-theory, algebraic geometry and homological algebra.
Milnor conjecture may refer to: