OSCAR 40

Last updated

AMSAT-OSCAR-40, also known as AO-40 or simply OSCAR 40, [1] was the on-orbit designation of an amateur radio satellite of the OSCAR series. Prior to launch, the spacecraft was known as Phase 3D or "P3D". AO-40 was built by AMSAT.

Contents

AO-40's project manager was Peter Guelzow of AMSAT-DL, the German AMSAT organization. Mr Guelzow holds amateur call sign DB2OS.

History

Design, construction and launch

Following the failure of the Phase 3A launcher, design studies were undertaken and construction started for two successor satellites, that became AO-10 (Phase 3B) and AO-13 (Phase 3C) respectively.

After the launch of AO-13, design commenced for a Phase 4 satellite. This idea was later shelved, and design of Phase 3D (on-orbit name: AO-40) was undertaken under direction of the project team based in Germany, involving amateur radio payloads from many countries in Europe.

Assembly was done at AMSAT's Spacecraft Integration Facility in the 'Free Trade Zone Building' at the Orlando International Airport, Orlando, Florida from 1994 to 2000.

It was launched on 16 November 2000, on an Ariane 5 launch vehicle from Kourou, in French Guiana, and reported cost was US$4.5 Million.

Operational problems

On 13 December 2000 at 11:23 UTC, transmissions from AO-40 ceased during the exercising of its 400 newton motor. The Command Team were able to infer that there had been an explosion caused by pressure in the propellant pipes caused by malfunction of the control valves. A protective cap that was supposed to be removed from the motor before launch, was left in place.[ citation needed ] This error occurred because of a difference between the venting mechanism of the 400N motor used in AO-13 and the one in AO-40, complicated by a misunderstanding between the propulsion team and the engine manufacturer. When the motor was fired, pressure built up where it shouldn't, and destructive failure occurred. The loss of the motor caused AO-40 to be left in an equatorial orbit that the satellite was not designed for.

As a result of this incident several pieces of radio equipment no longer functioned or were not able to be commissioned. Following strenuous efforts by the Command Team, signals were restored on 25 December 2000 at 2145 UTC when Command Team member Ian Ashley (amateur radio call sign ZL1AOX) of New Zealand successfully sent a 'reset' signal to the satellite. Onboard cameras were used to establish the attitude of the satellite, and the magnetorquer system was used to spin-stabilize the satellite.

During June 2001, gas from the arcjet thruster was vented during apogee to raise perigee and stabilize the orbit of the satellite. Because of issues with the initial 400N burn, the apogee of the spacecraft was considerably higher than initially designed, but this was not a major issue. Subsequently, the communication packages and cameras were gradually re-activated.

Failure

On 25 January 2004, telemetry from the main battery was observed to go to an extremely low voltage by Stacey Mills (amateur radio call sign W4SM), a member of the Command Team. This caused the onboard Internal Housekeeping Unit (IHU) computer to cut power to the transponder payloads. Earlier in the same orbit the progressive drop in voltage caused the auxiliary battery to come online in parallel with the main battery. However the auxiliary battery was not being maintained in a charged state. Tying the two batteries in parallel did not result in an obvious change in voltage, but meant that the auxiliary battery could not be tested independently. Many attempts were made to disconnect the main battery, but insufficient voltage was available to drive the relays. It is possible that one day an open-circuit failure may occur in the main battery, in which case the spacecraft may come to life again via the auxiliary batteries. However, for reasons discussed below this is highly unlikely. The command team believes that the main battery failure was probably a consequence of damage done during the initial explosive event, and it is likely that similar damage was done to the auxiliary battery, making an eventual recovery of AO-40 unlikely. It is clear that the initial explosion blew open the end of the spacecraft to which the omni antennas were attached. This exposed the underlying batteries to major fluctuations in temperature and the explosion itself may have caused physical damage to the cells.

Following this final failure, the new keplerian elements have persistently shown an increase in orbital period corresponding to an increase in the semi-major axis of AO-40's orbit by approximately 2.7 km. Assuming AO-40 had a mass of 400 kg, this change required approximately 160,000 joules of energy directed along the velocity vector of the orbit. Since an explosion would be unlikely to focus its energy so precisely, it is likely that a considerably larger explosion occurred synchronous with the final battery failure. The source of this energy release is unknown, but it strongly suggests that recovery will not occur. (W4SM)

On 9 March 2004, Colin Hurst (amateur radio call sign VK5HI) of Australia, a member of the command team, heard a change in the level of radio noise at the expected beacon frequency during the period 0310 to 0320 UTC (orbit 1541).

All telemetry captured by the command team, and its network of helpers, is archived on the web at the AMSAT website.

Related Research Articles

<span class="mw-page-title-main">Pioneer 0</span> 1958 failed U.S. space probe

Pioneer 0 was a failed United States space probe that was designed to go into orbit around the Moon, carrying a television camera, a micrometeorite detector and a magnetometer, as part of the first International Geophysical Year (IGY) science payload. It was designed and operated by the Air Force Ballistic Missile Division as the first spacecraft in the Pioneer program and was the first attempted launch beyond Earth orbit by any country, but the rocket failed shortly after launch. The probe was intended to be called Pioneer, but the launch failure precluded that name.

AMSAT is a name for amateur radio satellite organizations worldwide, but in particular the Radio Amateur Satellite Corporation (AMSAT) with headquarters at Washington, D.C. AMSAT organizations design, build, arrange launches for, and then operate (command) satellites carrying amateur radio payloads, including the OSCAR series of satellites. Other informally affiliated national organizations exist, such as AMSAT Germany (AMSAT-DL) and AMSAT Japan (JAMSAT).

UoSAT-2, which is also known as UO-11 and OSCAR-11, is a British satellite orbiting in Low Earth Orbit. The satellite functions as an amateur radio transmitter and was built at the University of Surrey. It launched into orbit in March 1984 and remains orbital and active, though unstable with irregular periods of transmission. All of the Analog telemetry channels have failed, making telemetry from OSCAR 11 useless. The satellite was still heard transmitting telemetry in 2015, thirty years after launch.

<span class="mw-page-title-main">AMSAT-OSCAR 51</span>

AMSAT-OSCAR 51 or AO-51 is the in-orbit name designation of a now defunct LEO amateur radio satellite of the OSCAR series; formerly known as ECHO, built by AMSAT. It was launched on June 29, 2004 from Baikonur Cosmodrome, Kazakhstan on a Dnepr launch vehicle. It is in sun synchronous low Earth orbit.

HAMSAT also known as HAMSAT INDIA, VU2SAT and VO-52 is a microsatellite weighing 42.5 kilograms (93.7 lb), providing amateur radio satellite communications services for Indian and international amateur radio operators. This satellite carries the in-orbit designation of VO-52, and is an OSCAR series satellite.

<span class="mw-page-title-main">FalconSAT</span> Program within the United States Air Force Academy for building small satellites

FalconSAT is the United States Air Force Academy's (USAFA) small satellite engineering program. Satellites are designed, built, tested, and operated by Academy cadets. The project is administered by the USAFA Space Systems Research Center under the direction of the Department of Astronautics. Most of the cadets who work on the project are pursuing a bachelor of science degree in astronautical engineering, although students from other disciplines join the project.

<span class="mw-page-title-main">MidSTAR-1</span>

MidSTAR-1 is an artificial satellite produced by the United States Naval Academy Small Satellite Program. It was sponsored by the United States Department of Defense (DoD) Space Test Program (STP), and was launched on March 9, 2007 at 03:10 UTC, aboard an Atlas V expendable launch vehicle from Cape Canaveral Air Force Station. MidSTAR-1 flew along with FalconSat 3, STPSat 1, and CFESat as secondary payloads; the primary payload was Orbital Express.

<span class="mw-page-title-main">AMSAT-OSCAR 7</span>

AMSAT-OSCAR 7, or AO-7, is the second Phase 2 amateur radio satellite constructed by the Radio Amateur Satellite Corporation or AMSAT. It was launched into Low Earth Orbit on November 15, 1974 and remained operational until a battery failure in 1981. Then after 21 years of apparent silence, the satellite was heard again on June 21, 2002 – 27 years after launch. At that time the public learned that the satellite had remained intermittently functional and was used surreptitiously for communication by the anticommunist opposition Fighting Solidarity during martial law in Poland.

<span class="mw-page-title-main">FASTRAC</span>

Formation Autonomy Spacecraft with Thrust, Relnav, Attitude and Crosslink is a pair of nanosatellites developed and built by students at The University of Texas at Austin. The project is part of a program sponsored by the Air Force Research Laboratory (AFRL), whose goal is to lead the development of affordable space technology. The FASTRAC mission will specifically investigate technologies that facilitate the operation of multiple satellites in formation. These enabling technologies include relative navigation, cross-link communications, attitude determination, and thrust. Due to the high cost of lifting mass into orbit, there is a strong initiative to miniaturize the overall weight of spacecraft. The utilization of formations of satellites, in place of large single satellites, reduces the risk of single point failure and allows for the use of low-cost hardware.

<span class="mw-page-title-main">Compass-1</span>

Compass-1 is a German amateur CubeSat picosatellite, built and operated in the late 2000s by Aachen University of Applied Science. It was launched by the Indian Space Research Organisation, aboard a PSLV rocket as a secondary payload to the CartoSat-2A primary spacecraft on 28 April 2008. It was launched into a Geocentric orbit with an altitude of 597 km. Its primary mission is remote sensing; however, it also contains some technology demonstration experiments regarding the use of small satellites and GPS tracking.

The Intelsat VI series of satellites were the 8th generation of geostationary communications satellites for the Intelsat Corporation. Designed and built by Hughes Aircraft Company (HAC) in 1983-1991, there were five VI-series satellites built: 601, 602, 603, 604, and 605.

SSETI Express was the first spacecraft to be designed and built by European students and was launched by the European Space Agency. SSETI Express is a small spacecraft, similar in size and shape to a washing machine. On board the student-built spacecraft were three CubeSat picosatellites, extremely small satellites weighing around one kg each. These were deployed one hour and forty minutes after launch. Twenty-one university groups, working from locations spread across Europe and with very different cultural backgrounds, worked together via the internet to jointly create the satellite. The expected lifetime of the mission was planned to be 2 months. SSETI Express encountered an unusually fast mission development: less than 18 months from kick-off in January 2004 to flight-readiness.

AMSAT-OSCAR 16, also known as AO-16 and PACSAT, is the in-orbit name designation of an amateur radio satellite of the OSCAR series. It was built by AMSAT and was launched on 22 January 1990 from Kourou, French Guiana on an Ariane 4 launch vehicle. It is in sun synchronous low Earth orbit.

Sputnik 40, also known as Sputnik Jr, PS-2 and Radio Sputnik 17 (RS-17), was a Franco-Russian amateur radio satellite which was launched in 1997 to commemorate the fortieth anniversary of the launch of Sputnik 1, the world's first artificial satellite. A 4-kilogram (8.8 lb) one-third scale model of Sputnik 1, Sputnik 40 was deployed from the Mir space station on 3 November 1997. Built by students, the spacecraft was constructed at the Polytechnic Laboratory of Nalchik in Kabardino-Balkaria, whilst its transmitter was assembled by Jules Reydellet College in Réunion with technical support from AMSAT-France.

Australis-OSCAR 5 is an amateur radio satellite that was launched into Low Earth Orbit on 23 January 1970 by a Thor Delta launcher from Vandenberg Air Force Base, Lompoc, California. AO-5 was launched piggyback with TIROS-M (ITOS-1) weather satellite).

<span class="mw-page-title-main">Dove-OSCAR 17</span>

Dove-OSCAR 17 is a Brazilian educational and amateur radio satellite (BRAMSAT) (AMSAT-BRAZIL) launched on 22 January 1990.

<span class="mw-page-title-main">Progress MS-09</span> 2018 Russian resupply spaceflight to the ISS

Progress MS-09, identified by NASA as Progress 70P, was a Progress spaceflight operated by Roscosmos to resupply the International Space Station (ISS). This was the 161st flight of a Progress spacecraft.

Fox-1D, AO-92 or AMSAT OSCAR 92 is an American amateur radio satellite. Fox-1D is a 1U CubeSat developed and built by AMSAT-NA. Fox-1D carries a single-channel transponder for mode U/V in FM. Fox-1D has an L-band converter, which allows the FM transponder to be switched on an uplink in the 23 centimetres (9.1 in) band.

Fox-1A, AO-85 or AMSAT OSCAR 85 is an American amateur radio satellite. It is a 1U Cubesat, was built by the AMSAT-NA and carries a single-channel transponder for FM radio. The satellite has one rod antenna each for the 70 centimetres (28 in) and 2 metres bands. To enable a satellite launch under NASA's Educational Launch of Nanosatellites (ELaNa) program, the satellite continues to carry a Penn State University student experiment.

Fox-1E, AO-109, Evolution or AMSAT OSCAR 109 is an American amateur radio satellite. It is a 1U Cubesat, was built by the AMSAT-NA and carries a single-channel transponder for FM radio. Fox-1E is the fifth amateur radio satellite of the Fox series of AMSAT North America.

References

  1. "SpaceNews 27-Nov-00". Radio Amateur Satellite Corporation. 27 November 2000. Retrieved 11 December 2016.