Part of a series on |
Automation |
---|
Automation in general |
Robotics and robots |
Impact of automation |
Trade shows and awards |
Operational design domain (ODD) is a term for a particular operating context for an automated system, often used in the field of autonomous vehicles. The context is defined by a set of conditions, including environmental, geographical, time of day, and other conditions. For vehicles, traffic and roadway characteristics are included. Manufacturers use ODD to indicate where/how their product operates safely. A given system may operate differently according to the immediate ODD. [1]
The concept presumes that automated systems have limitations. [2] Relating system function to the ODD it supports is important for developers and regulators to establish and communicate safe operating conditions. Systems should operate within those limitations. Some systems recognize the ODD and modify their behavior accordingly. For example, an autonomous car might recognize that traffic is heavy and disable its automated lane change feature. [2]
ODD is used for cars, for ships, [3] trains, [4] agricultural robots, [5] and other robots.
Various regulators have offered definitions of related terms:
Definition | Source |
---|---|
"operating conditions under which a given driving automation system ... or feature thereof is specifically designed to function" | ISO/TS 14812:2022(en), 3.7.3.2 [6] |
"operating conditions under which a given automated driving system ... or feature thereof is specifically designed to function, including, but not limited to, environmental, geographical, and time-of-day restrictions, and/or the requisite presence or absence of certain traffic or roadway characteristics" | ISO/TR 4804:2020(en), 3.37 [7] |
"operating conditions under which a given driving automation system or feature thereof is specifically designed to function, including, but not limited to, environmental, geographical, and time-of-day restrictions, and/or the requisite presence or absence of certain traffic or roadway characteristics" | ISO 34501:2022(en), 3.26 [8] |
"specific conditions under which a given driving automation system is designed to function" | ISO 21448:2022(en), 3.21 [9] |
"operating conditions under which a given driving automation system or feature thereof is specifically designed to function" | BSI PAS 1883 [10] |
"set of environments and situations the item is to operate within" | ANSI/UL 4600 [11] |
"environmental, geographic, time-of-day, traffic, infrastructure, weather and other conditions under which an automated driving system is specifically designed to function" | Global Forum for Road Traffic Safety (WP.1) resolution on the deployment of highly and fully automated vehicles in road traffic [12] |
"For the assessment of the vehicle safety, the vehicle manufacturers should document the [ODD] available on their vehicles and the functionality of the vehicle within the prescribed [ODD]. The [ODD] should describe the specific conditions under which the automated vehicle is intended to drive in the automated mode. The [ODD] should include the following information at a minimum: roadway types; geographic area; speed range; environmental conditions (weather as well as day/night time); and other domain constraints." | Revised Framework document on automated/autonomous vehicles (WP.29) [13] |
An "automated lane keeping system defines the specific operating conditions (e.g. environmental, geographic, time-of-day, traffic, infrastructure, speed range, weather and other conditions) within the boundaries fixed by this regulation under which the automated lane keeping system is designed to operate without any intervention by the driver." | UN Regulation No 157 – Uniform provisions concerning the approval of vehicles with regards to Automated Lane Keeping Systems [2021/389] [14] |
An ODD is defined in terms of physical infrastructure, operational constraints, objects, connectivity, environmental conditions, and zones. Physical infrastructure includes roadway types, surfaces, edges and geometry. Operational constraints include speed limits and traffic conditions. Environmental conditions include weather, illumination, etc. Zones include regions, states, school areas, and construction sites. | US Department of Transportation report [15] |
‘operational design Domain (‘ODD’)’ means operating conditions under which a given ADS is specifically designed to function, including, but not limited to, environmental, geographical, and time-of-day restrictions, and/or the requisite presence or absence of certain traffic or roadway characteristics. | EU Commission Implementing Regulation (EU) 2022/1426 [16] |
In 2022, Mercedes-Benz announced a product with an ODD of Level 3 autonomous driving at 130 km/h. [17]
A self-driving car, also known as a autonomous car (AC), driverless car, robotaxi, robotic car or robo-car, is a car that is capable of operating with reduced or no human input. Self-driving cars are responsible for all driving activities, such as perceiving the environment, monitoring important systems, and controlling the vehicle, which includes navigating from origin to destination.
Advanced driver-assistance systems (ADAS) are technologies that assist drivers with the safe operation of a vehicle. Through a human-machine interface, ADAS increase car and road safety. ADAS use automated technology, such as sensors and cameras, to detect nearby obstacles or driver errors, and respond accordingly. ADAS can enable various levels of autonomous driving.
Automatic train operation (ATO) is a method of operating trains automatically where the driver is not required or required for supervision at most. Alternatively, ATO can be defined as a subsystem within the automatic train control, which performs any or all of functions like programmed stopping, speed adjusting, door operation, and similar otherwise assigned to the train operator.
The Convention on Road Traffic, commonly known as the Vienna Convention on Road Traffic, is an international treaty designed to facilitate international road traffic and to increase road safety by establishing standard traffic rules among the contracting parties. The convention was agreed upon at the United Nations Economic and Social Council's Conference on Road Traffic and concluded in Vienna on 8 November 1968. This conference also produced the Convention on Road Signs and Signals. The convention had amendments on 3 September 1993 and 28 March 2006. There is a European Agreement supplementing the Convention on Road Traffic (1968), which was concluded in Geneva on 1 May 1971.
An International Driving Permit (IDP), often referred to as an international driving license, is a translation of a domestic driving license that allows the holder to drive a private motor vehicle in any country or jurisdiction that recognises the document. The term International Driving Permit was first mentioned in the document prescribed in the International Convention relative to Motor Traffic that was signed at Paris in 1926, and is a translation of the French 'permis de conduire international', or 'international driving license'. The Paris treaty, and all subsequent, use the word 'permit' exclusively in relation to all kinds of driving license.
Vehicular automation is the use of technology to assist or replace the operator of a vehicle such as a car, truck, aircraft, rocket, military vehicle, or boat. Assisted vehicles are semi-autonomous, whereas vehicles that can travel without a human operator are autonomous. The degree of autonomy may be subject to various constraints such as conditions. Autonomy is enabled by advanced driver-assistance systems (ADAS) of varying capacity.
A collision avoidance system (CAS), also known as a pre-crash system, forward collision warning system (FCW), or collision mitigation system, is an advanced driver-assistance system designed to prevent or reduce the severity of a collision. In its basic form, a forward collision warning system monitors a vehicle's speed, the speed of the vehicle in front of it, and the distance between the vehicles, so that it can provide a warning to the driver if the vehicles get too close, potentially helping to avoid a crash. Various technologies and sensors that are used include radar (all-weather) and sometimes laser (LIDAR) and cameras to detect an imminent crash. GPS sensors can detect fixed dangers such as approaching stop signs through a location database. Pedestrian detection can also be a feature of these types of systems.
The World Forum for Harmonization of Vehicle Regulations define AEBS. UN ECE regulation 131 requires a system which can automatically detect a potential forward collision and activate the vehicle braking system to decelerate a vehicle with the purpose of avoiding or mitigating a collision. UN ECE regulation 152 says deceleration has to be at least 5 metres per second squared.
Experiments have been conducted on self-driving cars since 1939; promising trials took place in the 1950s and work has proceeded since then. The first self-sufficient and truly autonomous cars appeared in the 1980s, with Carnegie Mellon University's Navlab and ALV projects in 1984 and Mercedes-Benz and Bundeswehr University Munich's Eureka Prometheus Project in 1987. In 1988, William L Kelley patented the first modern collision Predicting and Avoidance devices for Moving Vehicles. Then, numerous major companies and research organizations have developed working autonomous vehicles including Mercedes-Benz, General Motors, Continental Automotive Systems, Autoliv Inc., Bosch, Nissan, Toyota, Audi, Volvo, Vislab from University of Parma, Oxford University and Google. In July 2013, Vislab demonstrated BRAiVE, a vehicle that moved autonomously on a mixed traffic route open to public traffic.
Emergency Assist is a driver assistance system that monitors driver behavior by observing delays between the use of the accelerator and the brake; once a preset threshold of time has been exceeded the system will take control of the vehicle in order to bring it to a safe stop.
A robotaxi, also known as robot taxi, robo-taxi, self-driving taxi or driverless taxi, is an autonomous car operated for a ridesharing company.
Increases in the use of autonomous car technologies are causing incremental shifts in the responsibility of driving, with the primary motivation of reducing the frequency of traffic collisions. Liability for incidents involving self-driving cars is a developing area of law and policy that will determine who is liable when a car causes physical damage to persons or property. As autonomous cars shift the responsibility of driving from humans to autonomous car technology, there is a need for existing liability laws to evolve to reasonably identify the appropriate remedies for damage and injury. As higher levels of autonomy are commercially introduced, the insurance industry stands to see higher proportions of commercial and product liability lines of business, while the personal automobile insurance line of business shrinks.
Cruise LLC is an American self-driving car company headquartered in San Francisco, California. Founded in 2013 by Kyle Vogt and Dan Kan, Cruise tests and develops autonomous car technology. The company is a largely autonomous subsidiary of General Motors. Following a series of incidents, it suspended operations in October 2023, and Kyle Vogt resigned as CEO in November 2023. The company began returning its vehicles to public roads in May 2024.
In road-transport terminology, lane centering, also known as lane centering assist, lane assist, auto steer or autosteer, is an advanced driver-assistance system that keeps a road vehicle centered in the lane, relieving the driver of the task of steering. Lane centering is similar to lane departure warning and lane keeping assist, but rather than warn the driver, or bouncing the car away from the lane edge, it keeps the car centered in the lane. Together with adaptive cruise control (ACC), this feature may allow unassisted driving for some length of time. It is also part of automated lane keeping systems.
A self-driving truck, also known as an autonomous truck or robo-truck, is an application of self-driving technology aiming to create trucks that can operate without human input. Alongside light, medium, and heavy-duty trucks, many companies are developing self-driving technology in semi trucks to automate highway driving in the delivery process.
The impact of self-driving cars is anticipated to be wide-ranging in many areas of daily life. Self-driving cars have been the subject of significant research on their environmental, practical, and lifestyle consequences and their impacts remain debated.
Automated lane keeping systems (ALKS), also described as traffic jam chauffeurs, is an autonomous driving system that doesn't require driver supervision on motorways. ALKS is an international standard set out in UN-ECE regulation 157 and amounts to Level 3 vehicle automation. It is essentially a more robust combination of adaptive cruise control (ACC) and lane centering assist (LCA). When activated, it allows the driver to do non-driving tasks until alerted otherwise.
Regulation of self-driving cars, autonomous vehicles and automated driving system is an increasingly relevant topic in the automotive industry strongly related to the success of the actual technology. Multiple countries have passed local legislation and agreed on standards for the introduction of autonomous cars.
In the field of vehicular automation a scenario denotes a sequence of snapshots of the environment and the actions of a vehicle. Scenarios are created to represent real-world situations and are used for development, testing, and validation purposes.