Optimus platform

Last updated
Optimus
Optimus Logo.gif
Developer(s) Noesis Solutions
Stable release
2018.1 / July 2018
Operating system Cross-platform
Type Technical computing
License Proprietary
Website

Optimus is a Process Integration and Design Optimization (PIDO) platform developed by Noesis Solutions. Noesis Solutions takes part in key research projects, such as PHAROS [1] [2] [3] and MATRIX. [4]

Contents

Optimus allows the integration of multiple engineering software tools (CAD, Multibody dynamics, finite elements, computational fluid dynamics, ...) into a single and automated workflow. Once a simulation process is captured in a workflow, Optimus will direct the simulations to explore the design space and to optimize product designs for improved functional performance and lower cost, while also minimizing the time required for the overall design process.

Process integration

The Optimus GUI enables the creation of a graphical simulation workflow. A set of functions supports the integration of both commercial and in-house software. A simple workflow can cover a single simulation program, whereas more advanced workflows can include multiple simulation programs. These workflows may contain multiple branches, each with one or more simulation programs, and may include special statements that define looping and conditional branching.

Optimus’ workflow execution mechanism can range from a step-by-step review of the simulation process up to deployment on a large (and non-heterogeneous) computation cluster. Optimus is integrated with several resource management systems to support parallel execution on a computational cluster.

Design optimization

Optimus includes a wide range of methods and models to help solve design optimization problems:

Design of Experiments (DOE)

Design of Experiments (DOE) defines an optimal set of experiments in the design space in order to obtain the most relevant and accurate design information at minimal cost. Optimus supports the following DOE methods:
* Adaptive DOE (new)
* Full Factorial (2-level & 3-level)
* Adjustable Full Factorial
* Fractional Factorial
* Plackett-Burman
* Space Filling
* Central composite
* Random
* Latin-Hypercube
* Starpoints
* Diagonal
* Optimal design (I-, D- & A-optimal)
* User-defined

Response Surface Modeling (RSM)

Response Surface Modeling (RSM) is a collection of mathematical and statistical techniques that are useful to model and analyze problems in which a design response of interest is influenced by several design parameters. DOE methods in combination with RSM can predict design response values for combinations of input design parameters that were not previously calculated, with very little simulation effort. RSM thus allows further post-processing of DOE results.

Optimus’ Response Surface Modeling range from classical Least Squares methods to advanced Stochastic Interpolation methods, including Kriging, Neural Network, Radial Basis Functions and Gaussian Process models. To maximize RSM accuracy, Optimus can also generate the best RSM automatically – drawing from a large set of RSM algorithms and optimizing the RSM using a cross-validation approach.

Numerical Optimization

Optimus supports a wide range of single-objective and multi-objective methods. Multi-objective optimization methods usually generate a so-called „Pareto front“ or use a weighting function to generate a single Pareto point.

Based on the search methods, Optimus optimization methods (both single and multi-objective) can be categorized into:

* SQP (Sequential Quadratic Programming)
* NLPQL
* Generalized Reduced Gradient
* NBI, weighted methods (multi-objective)
* Genetic algorithms (Differential Evolution, Self-adaptive Evolution, ...)
* Simulated Annealing
* CMA-ES
* NSEA+, mPSO (multi-objective)

User can also integrate their own optimization strategy in the Optimus environment.


Robust design optimization & Taguchi method

In order to assess the influence of real-world uncertainties and tolerances on a given design, Optimus contains Monte Carlo Simulation as well as a First-Order Second Moment method to estimate and improve the robustness of a design. Optimus calculates and optimizes the probability of failure using advanced reliability methods, including First-Order and Second-Order Reliability Methods.

Optimus also includes a dedicated set of functionalities to set up a Taguchi study through the definition of control factors, noise factors and signal factors in case of a dynamic study. Genichi Taguchi, a Japanese engineer, published his first book on experimental design in 1958. The aim of the Taguchi design is to make a product or process more stable in the face of variations over which there is little or no control (for example, ensuring reliable performance of a car engine for different ambient temperatures).

Applications

The use of Optimus covers a wide range of applications, including

Related Research Articles

Multi-disciplinary design optimization (MDO) is a field of engineering that uses optimization methods to solve design problems incorporating a number of disciplines. It is also known as multidisciplinary system design optimization (MSDO), and Multidisciplinary Design Analysis and Optimization (MDAO).

Design for Six Sigma (DFSS) is an Engineering design process, business process management method related to traditional Six Sigma. It is used in many industries, like finance, marketing, basic engineering, process industries, waste management, and electronics. It is based on the use of statistical tools like linear regression and enables empirical research similar to that performed in other fields, such as social science. While the tools and order used in Six Sigma require a process to be in place and functioning, DFSS has the objective of determining the needs of customers and the business, and driving those needs into the product solution so created. It is used for product or process design in contrast with process improvement. Measurement is the most important part of most Six Sigma or DFSS tools, but whereas in Six Sigma measurements are made from an existing process, DFSS focuses on gaining a deep insight into customer needs and using these to inform every design decision and trade-off.

Response surface methodology

In statistics, response surface methodology (RSM) explores the relationships between several explanatory variables and one or more response variables. The method was introduced by George E. P. Box and K. B. Wilson in 1951. The main idea of RSM is to use a sequence of designed experiments to obtain an optimal response. Box and Wilson suggest using a second-degree polynomial model to do this. They acknowledge that this model is only an approximation, but they use it because such a model is easy to estimate and apply, even when little is known about the process.

A surrogate model is an engineering method used when an outcome of interest cannot be easily measured or computed, so a model of the outcome is used instead. Most engineering design problems require experiments and/or simulations to evaluate design objective and constraint functions as a function of design variables. For example, in order to find the optimal airfoil shape for an aircraft wing, an engineer simulates the airflow around the wing for different shape variables. For many real-world problems, however, a single simulation can take many minutes, hours, or even days to complete. As a result, routine tasks such as design optimization, design space exploration, sensitivity analysis and what-if analysis become impossible since they require thousands or even millions of simulation evaluations.

Multi-objective optimization is an area of multiple criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously. Multi-objective optimization has been applied in many fields of science, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives. Minimizing cost while maximizing comfort while buying a car, and maximizing performance whilst minimizing fuel consumption and emission of pollutants of a vehicle are examples of multi-objective optimization problems involving two and three objectives, respectively. In practical problems, there can be more than three objectives.

In marketing, multivariate testing or multi-variable testing techniques apply statistical hypothesis testing on multi-variable systems, typically consumers on websites. Techniques of multivariate statistics are used.

Robust decision-making (RDM) is an iterative decision analytic framework that aims to help identify potential robust strategies, characterize the vulnerabilities of such strategies, and evaluate the tradeoffs among them. RDM focuses on informing decisions under conditions of what is called "deep uncertainty", that is, conditions where the parties to a decision do not know or do not agree on the system model(s) relating actions to consequences or the prior probability distributions for the key input parameters to those model(s).

MULTICUBE is a Seventh Framework Programme (FP7) project aimed to define innovative methods for the design optimization of computer architectures for the embedded system domain.

OptiY is a design environment providing modern optimization strategies and state of the art probabilistic algorithms for uncertainty, reliability, robustness, sensitivity analysis, data-mining and meta-modeling.

Software that is used for designing factorial experiments plays an important role in scientific experiments and represents a route to the implementation of design of experiments procedures that derive from statistical and combinatorial theory. In principle, easy-to-use design of experiments (DOE) software should be available to all experimenters to foster use of DOE.

ModelCenter, developed by Phoenix Integration, Inc., is a software package that aids in the design and optimization of systems. It enables users to conduct trade studies, as well as optimize designs. It interfaces with other popular modeling tools, including Systems Tool Kit, PTC Integrity Modeler, IBM Rhapsody, No Magic, Matlab, Nastran, Microsoft Excel, and Wolfram SystemModeler. ModelCenter also has tools to enable collaboration among design team members.

Kimeme is an open platform for multi-objective optimization and multidisciplinary design optimization. It is intended to be coupled with external numerical software such as computer-aided design (CAD), finite element analysis (FEM), structural analysis and computational fluid dynamics tools. It was developed by Cyber Dyne Srl and provides both a design environment for problem definition and analysis and a software network infrastructure to distribute the computational load.

Red Cedar Technology is a software development and engineering services company. Red Cedar Technology was founded by Michigan State University professors Ron Averill and Erik Goodman in 1999. The headquarters is located in East Lansing, Michigan, near MSU's campus. Red Cedar Technology develops and distributes the HEEDS Professional suite of design optimization software. HEEDS is based on spin-out technology from Michigan State University. On June 30, 2013 Red Cedar Technology was acquired by CD-adapco. CD-adapco was acquired in 2016 by Siemens Digital Industries Software.

Robust parameter design

A robust parameter design, introduced by Genichi Taguchi, is an experimental design used to exploit the interaction between control and uncontrollable noise variables by robustification—finding the settings of the control factors that minimize response variation from uncontrollable factors. Control variables are variables of which the experimenter has full control. Noise variables lie on the other side of the spectrum. While these variables may be easily controlled in an experimental setting, outside of the experimental world they are very hard, if not impossible, to control. Robust parameter designs use a naming convention similar to that of FFDs. A 2(m1+m2)-(p1-p2) is a 2-level design where m1 is the number of control factors, m2 is the number of noise factors, p1 is the level of fractionation for control factors, and p2 is the level of fractionation for noise factors.

Design–Expert is a statistical software package from Stat-Ease Inc. that is specifically dedicated to performing design of experiments (DOE). Design–Expert offers comparative tests, screening, characterization, optimization, robust parameter design, mixture designs and combined designs. Design–Expert provides test matrices for screening up to 50 factors. Statistical significance of these factors is established with analysis of variance (ANOVA). Graphical tools help identify the impact of each factor on the desired outcomes and reveal abnormalities in the data.

pSeven For designing software used in electronics and embedded systems

pSeven is a design space exploration software platform developed by DATADVANCE, extending design, simulation and analysis capabilities and assisting in smarter and faster design decisions. It provides a seamless integration with third party CAD and CAE software tools, powerful multi-objective and robust optimization algorithms, data analysis and uncertainty quantification tools.

OptiSLang

optiSLang is a software platform for CAE-based sensitivity analysis, multi-disciplinary optimization (MDO) and robustness evaluation. It is developed by Dynardo GmbH and provides a framework for numerical Robust Design Optimization (RDO) and stochastic analysis by identifying variables which contribute most to a predefined optimization goal. This includes also the evaluation of robustness, i.e. the sensitivity towards scatter of design variables or random fluctuations of parameters. In 2019, Dynardo GmbH was acquired by Ansys.

Simulation-based optimization

Simulation-based optimization integrates optimization techniques into simulation modeling and analysis. Because of the complexity of the simulation, the objective function may become difficult and expensive to evaluate. Usually, the underlying simulation model is stochastic, so that the objective function must be estimated using statistical estimation techniques.

References

  1. "PHAROS".
  2. "Cordis project".
  3. "Clean Aviation".
  4. "Cordis project".
  5. Carello, M.; Filippo, N.; d'Ippolito, R. (2012-04-24). "Performance optimization for the XAM hybrid electric vehicle prototype". Proceedings of the SAE World Congress SAE 2012. SAE Technical Paper Series. 1. doi:10.4271/2012-01-0773.