The osmeterium is a defensive organ found in all papilionid larvae, in all stages.[1] The organ is situated in the prothoracic segment and can be everted when the larva feels threatened. The everted organ resembles a fleshy forked tongue (not unlike a snake tongue), and this along with the large eye-like spots on the body might be used to startle birds and small reptiles. The osmeterial organ remains inside the body in the thoracic region in an inverted position and is everted when the larva is disturbed in any way emitting a foul, disagreeable odor which serves to repel ants,[2] small spiders[3] and mantids.[4] To humans, this odour is rather strong but not unpleasant, usually smelling like a concentrated scent of the caterpillar's food plant and pineapple.
The fine structure of the osmeterium of Papilio demoleus libanius Fruhstorfer has been studied and found to contain 3 types of specialised cells for synthesis, acid secretion,[5] and storage[6] of the osmeterial secretion.
Structure
Papilio demodocus larva everting its osmeterium fully, and with one horn applying the repugnatorial secretion to the finger that irritated itA European paper wasp interacts with a anise swallowtail caterpillar which uses its osmeterium in defense. Most scenes are repeated in closeup at one-fourth speed.
The fine structure of the osmeterium gland of Papilio larvae consists of the following cell types.
Ellipsoid gland cells have an extensively infolded basal plasma membrane, abundant ribosomes and whorls of smooth endoplasmic reticulum. The apical plasma membrane bears long microvilli extending into a mass of granular material containing electron-lucid cavities. Tangential slits occur in the epicuticle. These cells are presumed to be organic acid-secreting cells.
Tubular arm cells contain heterogeneous, electron-dense inclusions, extensively-branched nuclei and large mitochondria, sometimes distended with electron-dense material. The apical plasma membrane bears short microvilli. The inner, dense epicuticle forms a complex ramifying system. These glandular cells presumably synthesize and secrete the mature secretion.[5]
Specific study of Papilio demoleus libanius Fruhstorfer shows the possible existence of a third type of cell
Slack cells, loosely surround the ellipsoid gland cells. These cells possess papillae, well-developed, rough endoplasmic reticulum, and numerous secretory vacuoles of various sizes and electron density. They may function as storage cells.[6]
Studies on osmeterial secretion makes it possible to classify the Papilionid species into two large categories on the basis of the chemical property of osmeterial secretion.[10]
One is a group in which the chemical constitution of osmeterial secretion of the last larval instar markedly differs in quality from those of the younger larvae. The results derived from Papilio protenor,[10]P. demodocus[8] and other Papilio species (P. helenus, P. machaon, P. memnon, P. bianor, P. maccki, P. xuthus, etc., unpublished work) may assign the genus Papilio (tribe Papilionini) to this group, which can be termed 'heterogeneous type'.
The genera Luehdorfia (tribe Zerynthiini), Graphium (tribe Graphiini) and Atrophaneura (tribe Troidini) apparently belong to the other group, in which no qualitative change of osmeterial secretion occurs at the last larval ecdysis. This group can be designated as 'homogeneous type', which is further subdivisible into three types.
Aliphatic acid and ester - Graphium (Graphiini, Papilioninae)
Function
Eversion of the osmeterial gland is demonstrably effective in reducing predation by ants and small spiders,[3] and its chemical constituents have been shown to repel or kill ants,[2][11] and mantids.[1][4]
References
1 2 Chattopadhyay, Jagannath (2011). "The structure and defensive efficacy of glandular secretion of the larval osmeterium in Graphium agamemnon agamemnon Linnaeus, 1758 (Lepidoptera: Papilionidae)". Turkish Journal of Zoology. doi:10.3906/zoo-0901-24.
1 2 3 Chow, Y. S.; Tsai, R. S. (April 1989). "Protective chemicals in caterpillar survival". Experientia. 45 (4): 390–392. doi:10.1007/BF01957490.
1 2 Crossley, A.C.; Waterhouse, D.F. (January 1969). "The ultrastructure of the osmeterium and the nature of its secretion in Papilio larvae (lepidoptera)". Tissue and Cell. 1 (3): 525–554. doi:10.1016/s0040-8166(69)80020-0. PMID18631483.
1 2 Lu, Chow-Chin; Chow, Yien Shing (May 1991). "Fine Structure of the Larval Osmeterium of Papilio demoleus libanius (Lepidoptera: Papilionidae)". Annals of the Entomological Society of America. 84 (3): 294–302. doi:10.1093/aesa/84.3.294.
↑ Burger, B. V.; Munro, Zenda; Röth, Marina; Spies, H. S. C.; Truter, Verona; Geertsema, H.; Habich, A. (August 1985). "Constituents of osmeterial secretion of pre-final instar larvae of citrus swallowtail,Papilio demodocus (Esper) (Lepidoptera: Papilionidae)". Journal of Chemical Ecology. 11 (8): 1093–1113. Bibcode:1985JCEco..11.1093B. doi:10.1007/BF01020678. PMID24310333.
1 2 Burger, B.V.; Röth, Marina; Roux, Maritha le; Spies, H.S.C.; Truter, Verona; Geertsema, H. (January 1978). "The chemical nature of the defensive larval secretion of the citrus swallowtail, Papilio demodocus". Journal of Insect Physiology. 24 (12): 803–805. Bibcode:1978JInsP..24..803B. doi:10.1016/0022-1910(78)90099-9.
↑ Honda, Keiichi; Hayashi, Nanao (June 1995). "Chemical nature of larval osmeterial secretions of papilionid butterflies in the genera Parnassius, Sericinus and Pachliopta". Journal of Chemical Ecology. 21 (6): 859–867. Bibcode:1995JCEco..21..859H. doi:10.1007/BF02033466. PMID24234323.
1 2 Honda, Keiichi (January 1980). "Osmeterial secretions of papilionid larvae in the genera Luehdorfia, Graphium and Atrophaneura (lepidoptera)". Insect Biochemistry. 10 (5): 583–588. doi:10.1016/0020-1790(80)90095-5.
↑ Honda, Keiichi (June 1983). "Defensive potential of components of the larval osmeterial secretion of papilionid butterflies against ants". Physiological Entomology. 8 (2): 173–179. doi:10.1111/j.1365-3032.1983.tb00346.x.
External links
Wikimedia Commons has media related to Osmeterium.
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.