PILRA

Last updated
PILRA
4nfb red PILRA 4nfc yellow PILRB.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases PILRA , FDF03, paired immunoglobin like type 2 receptor alpha
External IDs OMIM: 605341 MGI: 2450529 HomoloGene: 8387 GeneCards: PILRA
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_178273
NM_013439
NM_178272

NM_153510

RefSeq (protein)

NP_038467
NP_840056
NP_840057

NP_705730

Location (UCSC) Chr 7: 100.37 – 100.4 Mb Chr 5: 137.82 – 137.83 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Paired immunoglobin like type 2 receptor alpha is a protein that in humans is encoded by the PILRA gene. [5]

Contents

Function

Cell signaling pathways rely on a dynamic interaction between activating and inhibiting processes. SHP-1-mediated dephosphorylation of protein tyrosine residues is central to the regulation of several cell signaling pathways. Two types of inhibitory receptor superfamily members are immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing receptors and their non-ITIM-bearing, activating counterparts.

Control of cell signaling via SHP-1 is thought to occur through a balance between PILRalpha-mediated inhibition and PILRbeta-mediated activation. These paired immunoglobulin-like receptor genes are located in a tandem head-to-tail orientation on chromosome 7. This particular gene encodes the ITIM-bearing member of the receptor pair, which functions in the inhibitory role. Alternative splicing has been observed at this locus, and three variants, each encoding a distinct isoform, are described.

In contrast to PILRbeta, which has only one known natural ligand, PILRalpha has many known protein-protein interactions. [6] PILRalpha recruits PTPN6 and PTPN1 via interactions of its ITIM motifs. [7] PILRalpha is also used by some viruses, notably HSV-1, for cell entry. [6] [8]

Structure

As with other paired receptors, PILRalpha has a longer cytoplasmic tail compared to PILRbeta and features two intracellular ITIM motifs. [7] [9] PILRalpha has an extracellular domain with a siglec-like immunoglobulin fold that substitutes hydrophobic interactions for the siglec fold's characteristic disulfide bond. The structure of this domain is very similar to that of PILRbeta, but the two proteins nevertheless have different binding affinities for sialic acid. [6]

Related Research Articles

<i>Herpesviridae</i> Family of DNA viruses

Herpesviridae is a large family of DNA viruses that cause infections and certain diseases in animals, including humans. The members of this family are also known as herpesviruses. The family name is derived from the Greek word ἕρπειν, referring to spreading cutaneous lesions, usually involving blisters, seen in flares of herpes simplex 1, herpes simplex 2 and herpes zoster (shingles). In 1971, the International Committee on the Taxonomy of Viruses (ICTV) established Herpesvirus as a genus with 23 viruses among four groups. As of 2020, 115 species are recognized, all but one of which are in one of the three subfamilies. Herpesviruses can cause both latent and lytic infections.

Siglecs(Sialic acid-binding immunoglobulin-type lectins) are cell surface proteins that bind sialic acid. They are found primarily on the surface of immune cells and are a subset of the I-type lectins. There are 14 different mammalian Siglecs, providing an array of different functions based on cell surface receptor-ligand interactions.

<span class="mw-page-title-main">CD22</span> Lectin molecule

CD22, or cluster of differentiation-22, is a molecule belonging to the SIGLEC family of lectins. It is found on the surface of mature B cells and to a lesser extent on some immature B cells. Generally speaking, CD22 is a regulatory molecule that prevents the overactivation of the immune system and the development of autoimmune diseases.

<span class="mw-page-title-main">CD33</span> Mammalian protein found in Homo sapiens

CD33 or Siglec-3 is a transmembrane receptor expressed on cells of myeloid lineage. It is usually considered myeloid-specific, but it can also be found on some lymphoid cells.

<span class="mw-page-title-main">Poliovirus receptor-related 2</span> Protein-coding gene in the species Homo sapiens

Poliovirus receptor-related 2 (PVRL2), also known as nectin-2 and CD112, is a human plasma membrane glycoprotein.

<span class="mw-page-title-main">Signal-regulatory protein alpha</span> Protein-coding gene in the species Homo sapiens

Signal regulatory protein α (SIRPα) is a regulatory membrane glycoprotein from SIRP family expressed mainly by myeloid cells and also by stem cells or neurons.

<span class="mw-page-title-main">KIR3DL1</span> Protein-coding gene in the species Homo sapiens

Killer cell immunoglobulin-like receptor 3DL1 is a protein that in humans is encoded by the KIR3DL1 gene.

<span class="mw-page-title-main">Poliovirus receptor-related 1</span> Protein-coding gene in the species Homo sapiens

Poliovirus receptor-related 1 (PVRL1), also known as nectin-1 and CD111 (formerly herpesvirus entry mediator C, HVEC) is a human protein of the immunoglobulin superfamily (IgSF), also considered a member of the nectins. It is a membrane protein with three extracellular immunoglobulin domains, a single transmembrane helix and a cytoplasmic tail. The protein can mediate Ca2+-independent cellular adhesion further characterizing it as IgSF cell adhesion molecule (IgSF CAM).

<span class="mw-page-title-main">LILRB4</span> Protein-coding gene in the species Homo sapiens

Leukocyte immunoglobulin-like receptor subfamily B member 4 is a protein that in humans is encoded by the LILRB4 gene.

<span class="mw-page-title-main">Sialic acid-binding Ig-like lectin 12</span> Protein-coding gene in the species Homo sapiens

Sialic acid-binding Ig-like lectin 12, or Siglec-XII, is a protein that in humans, is encoded by the SIGLEC12 gene.

<span class="mw-page-title-main">LILRA2</span> Protein-coding gene in the species Homo sapiens

Leukocyte immunoglobulin-like receptor subfamily A member 2 is a protein that in humans is encoded by the LILRA2 gene.

<span class="mw-page-title-main">SIGLEC8</span> Protein-coding gene in the species Homo sapiens

Sialic acid-binding Ig-like lectin 8 is a protein that in humans is encoded by the SIGLEC8 gene. This gene is located on chromosome 19q13.4, about 330 kb downstream of the SIGLEC9 gene. Within the siglec family of transmembrane proteins, Siglec-8 belongs to the CD33-related siglec subfamily, a subfamily that has undergone rapid evolution.

<span class="mw-page-title-main">PILRB</span> Protein-coding gene in the species Homo sapiens

Paired immunoglobulin-like type 2 receptor beta is a protein that in humans is encoded by the PILRB gene.

<span class="mw-page-title-main">SIGLEC10</span> Protein-coding gene in the species Homo sapiens

Sialic acid-binding Ig-like lectin 10 is a protein that in humans is encoded by the SIGLEC10 gene. Siglec-G is often referred to as the murine paralog of human Siglec-10

<span class="mw-page-title-main">KIR3DL3</span> Protein-coding gene in the species Homo sapiens

Killer cell immunoglobulin-like receptor 3DL3 is a protein that in humans is encoded by the KIR3DL3 gene.

Anthony (Tony) Charles Minson, PhD, FMedSci is a British virologist known for his work on the biology of herpesviruses, and a university administrator. He was the Senior Pro-Vice-Chancellor of the University of Cambridge from 2003 to 2009. He is emeritus professor of virology at the university's Department of Pathology and an emeritus fellow of Wolfson College.

<span class="mw-page-title-main">Herpesvirus glycoprotein B</span> Viral glycoprotein

Herpesvirus glycoprotein B is a viral glycoprotein that is involved in the viral cell entry of Herpes simplex virus (HSV). Herpesviruses have a lipid bilayer, called the envelope, which contains twelve surface glycoproteins. For infectivity to be attained, the double stranded DNA genome of HSV must enter the host cell through means of fusion of its envelope with the cellular membrane or via endocytosis. Other viral glycoproteins involved in the process of viral cell entry include gC, gB, gD, gH, and gL, but only gC, gB, gD, and gH are required for the fusion of the HSV's envelope with the cellular membrane. It can be noted that all herpesviruses have glycoproteins gB, gH, and gL.

Patricia Gail Spear is an American virologist. She is a professor emeritus of microbiology and immunology at Northwestern University in Evanston, Illinois. She is best known for her pioneering work studying the herpes simplex virus. Spear is a past president of the American Society for Virology and an elected member of the National Academy of Sciences.

<span class="mw-page-title-main">Paired receptors</span>

Paired receptors are pairs or clusters of receptor proteins that bind to extracellular ligands but have opposing activating and inhibitory signaling effects. Traditionally, paired receptors are defined as homologous pairs with similar extracellular domains and different cytoplasmic regions, whose genes are located together in the genome as part of the same gene cluster and which evolved through gene duplication. Homologous paired receptors often, but not always, have a shared ligand in common. More broadly, pairs of receptors have been identified that exhibit paired functional behavior - responding to a shared ligand with opposing intracellular signals - but are not closely homologous or co-located in the genome. Paired receptors are highly expressed in the cells of the immune system, especially natural killer (NK) and myeloid cells, and are involved in immune regulation.

<span class="mw-page-title-main">SIGLEC6</span> Protein-coding gene in the species Homo sapiens

Sialic acid-binding Ig-like lectin 6 is a protein that in humans is encoded by the SIGLEC6 gene. The gene was originally named CD33L (CD33-like) due to similarities between these genes but later became known as OB-BP1 due to its ability to bind to this factor and, finally, SIGLEC6 as the sixth member of the SIGLEC family of receptors to be identified. The protein has also been given the CD designation CD327.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000085514 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000046245 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: Paired immunoglobin like type 2 receptor alpha" . Retrieved 2017-01-10.
  6. 1 2 3 Lu Q, Lu G, Qi J, Wang H, Xuan Y, Wang Q, et al. (June 2014). "PILRα and PILRβ have a siglec fold and provide the basis of binding to sialic acid". Proceedings of the National Academy of Sciences of the United States of America. 111 (22): 8221–6. Bibcode:2014PNAS..111.8221L. doi: 10.1073/pnas.1320716111 . PMC   4050567 . PMID   24843130.
  7. 1 2 Mousseau DD, Banville D, L'Abbé D, Bouchard P, Shen SH (February 2000). "PILRalpha, a novel immunoreceptor tyrosine-based inhibitory motif-bearing protein, recruits SHP-1 upon tyrosine phosphorylation and is paired with the truncated counterpart PILRbeta". The Journal of Biological Chemistry. 275 (6): 4467–74. doi: 10.1074/jbc.275.6.4467 . PMID   10660620.
  8. Furukawa A, Kakita K, Yamada T, Ishizuka M, Sakamoto J, Hatori N, et al. (December 2017). "Structural and thermodynamic analyses reveal critical features of glycopeptide recognition by the human PILRα immune cell receptor". The Journal of Biological Chemistry. 292 (51): 21128–21136. doi: 10.1074/jbc.M117.799239 . PMC   5743085 . PMID   29046357.
  9. Wilson MD, Cheung J, Martindale DW, Scherer SW, Koop BF (November 2006). "Comparative analysis of the paired immunoglobulin-like receptor (PILR) locus in six mammalian genomes: duplication, conversion, and the birth of new genes". Physiological Genomics. 27 (3): 201–18. doi:10.1152/physiolgenomics.00284.2005. PMID   16926269.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.