PPAN

Last updated
PPAN
Identifiers
Aliases PPAN , BXDC3, SSF, SSF-1, SSF1, SSF2, peter pan homolog (Drosophila), peter pan homolog
External IDs OMIM: 607793 MGI: 2178445 HomoloGene: 5690 GeneCards: PPAN
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001346139
NM_001346141
NM_020230

NM_145610

RefSeq (protein)

NP_001035754
NP_001185619

NP_663585

Location (UCSC) Chr 19: 10.11 – 10.11 Mb Chr 9: 20.8 – 20.8 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Suppressor of SWI4 1 homolog is a protein that in humans is encoded by the PPAN gene. [5] [6]

The protein encoded by this gene is an evolutionarily conserved protein similar to yeast SSF1 as well as to the gene product of the Drosophila gene peter pan (PPAN). SSF1 is known to be involved in the second step of mRNA splicing. Both SSF1 and PPAN are essential for cell growth and proliferation. This gene was found to cotranscript with P2RY11/P2Y(11), an immediate downstream gene on the chromosome that encodes an ATP receptor. The chimeric transcripts of this gene and P2RY11 were found to be ubiquitously present and regulated during granulocytic differentiation. Exogenous expression of this gene was reported to reduce the anchorage-independent growth of some tumor cells. [6]

Although being involved in ribosome biogenesis, human PPAN is not merely localized in nucleoli, but also in mitochondria. Depletion of PPAN provokes apoptosis as observed by increased amounts of p53 and its target gene p21, BAX-driven depolarisation of mitochondria, cytochrome c release as well as caspase-dependent cleavage of PARP. [7] Recent studies revealed that PPAN participates in the regulation of mitochondrial homeostasis, presumably via modulation of autophagy. [8] Furthermore, PPAN is required for proper cycling of cells since down regulation of PPAN in cancer cells results in a p53-independent cell cycle arrest. [9]

One of the introns of PPAN encodes the Small nucleolar RNA SNORD105. [10]

Related Research Articles

p53 Mammalian protein found in Homo sapiens

p53, also known as Tumor protein P53, cellular tumor antigen p53, or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins are crucial in vertebrates, where they prevent cancer formation. As such, p53 has been described as "the guardian of the genome" because of its role in conserving stability by preventing genome mutation. Hence TP53 is classified as a tumor suppressor gene.

<span class="mw-page-title-main">BAG1</span> Protein-coding gene in the species Homo sapiens

BAG family molecular chaperone regulator 1 is a protein that in humans is encoded by the BAG1 gene.

<span class="mw-page-title-main">SIAH1</span> Protein-coding gene in the species Homo sapiens

E3 ubiquitin-protein ligase SIAH1 is an enzyme that in humans is encoded by the SIAH1 gene.

<span class="mw-page-title-main">TOP2B</span> Protein-coding gene in the species Homo sapiens

DNA topoisomerase 2-beta is an enzyme that in humans is encoded by the TOP2B gene.

<span class="mw-page-title-main">MCL1</span> Protein-coding gene in the species Homo sapiens

Induced myeloid leukemia cell differentiation protein Mcl-1 is a protein that in humans is encoded by the MCL1 gene.

<span class="mw-page-title-main">Non-POU domain-containing octamer-binding protein</span> Protein-coding gene in the species Homo sapiens

Non-POU domain-containing octamer-binding protein (NonO) is a protein that in humans is encoded by the NONO gene.

<span class="mw-page-title-main">DNAJA3</span> Protein-coding gene in the species Homo sapiens

DnaJ homolog subfamily A member 3, mitochondrial, also known as Tumorous imaginal disc 1 (TID1), is a protein that in humans is encoded by the DNAJA3 gene on chromosome 16. This protein belongs to the DNAJ/Hsp40 protein family, which is known for binding and activating Hsp70 chaperone proteins to perform protein folding, degradation, and complex assembly. As a mitochondrial protein, it is involved in maintaining membrane potential and mitochondrial DNA (mtDNA) integrity, as well as cellular processes such as cell movement, growth, and death. Furthermore, it is associated with a broad range of diseases, including neurodegenerative diseases, inflammatory diseases, and cancers.

<span class="mw-page-title-main">P2RY11</span> Protein-coding gene in the species Homo sapiens

P2Y purinoceptor 11 is a protein that in humans is encoded by the P2RY11 gene.

<span class="mw-page-title-main">P2RY4</span> Protein-coding gene in the species Homo sapiens

P2Y purinoceptor 4 is a protein that in humans is encoded by the P2RY4 gene.

<span class="mw-page-title-main">SIAH2</span> Protein-coding gene in the species Homo sapiens

E3 ubiquitin-protein ligase SIAH2 is an enzyme that in humans is encoded by the SIAH2 gene.

<span class="mw-page-title-main">TRIB3</span> Protein-coding gene in the species Homo sapiens

Tribbles homolog 3 is a protein that in humans is encoded by the TRIB3 gene.

<span class="mw-page-title-main">HNRNPAB</span> Protein-coding gene in humans

Heterogeneous nuclear ribonucleoprotein A/B, also known as HNRNPAB, is a protein which in humans is encoded by the HNRNPAB gene. Although this gene is named HNRNPAB in reference to its first cloning as an RNA binding protein with similarity to HNRNP A and HNRNP B, it is not a member of the HNRNP A/B subfamily of HNRNPs, but groups together closely with HNRNPD/AUF1 and HNRNPDL.

<span class="mw-page-title-main">60S ribosomal protein L11</span> Protein found in humans

60S ribosomal protein L11 is a protein that in humans is encoded by the RPL11 gene.

<span class="mw-page-title-main">GCM1</span> Protein-coding gene in the species Homo sapiens

Chorion-specific transcription factor GCMa is a protein that, in humans, is encoded by the GCM1 gene.

<span class="mw-page-title-main">CDC14A</span> Protein-coding gene in the species Homo sapiens

Dual specificity protein phosphatase CDC14A is an enzyme that in humans is encoded by the CDC14A gene.

<span class="mw-page-title-main">EIF3D</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 3 subunit D (eIF3d) is a protein that in humans is encoded by the EIF3D gene.

<span class="mw-page-title-main">CHD8</span> Protein-coding gene in the species Homo sapiens

Chromodomain-helicase-DNA-binding protein 8 is an enzyme that in humans is encoded by the CHD8 gene.

<span class="mw-page-title-main">CDC14B</span> Protein-coding gene in the species Homo sapiens

Dual specificity protein phosphatase CDC14B is an enzyme that in humans is encoded by the CDC14B gene.

<span class="mw-page-title-main">TRIB1</span> Protein-coding gene in the species Homo sapiens

Tribbles homolog 1 is a protein kinase that in humans is encoded by the TRIB1 gene. Orthologs of this protein pseudokinase (pseudoenzyme) can be found almost ubiquitously throughout the animal kingdom. It exerts its biological functions through binding to signalling proteins of the MAPKK level of the MAPK pathway, therefore eliciting a regulatory role in the function of this pathway which mediates proliferation, apoptosis and differentiation in cells. Tribbles-1 is encoded by the trib1 gene, which in humans can be found on chromosome 8 at position 24.13 on the longest arm (q). Recent crystal structures show that Tribbles 1 has an unusual 3D structure, containing a 'broken' C-helix region, a binding site for ubiquitinated substrates such as C/EBPalpha and a key regulatory C-tail region. Like TRIB2 and TRIB3, TRIB1 has recently been considered as a potential allosteric drug target.

<span class="mw-page-title-main">ZNF330</span> Protein-coding gene in the species Homo sapiens

Zinc finger protein 330 is a protein that in humans is encoded by the ZNF330 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000130810 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000004100 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Welch PJ, Marcusson EG, Li QX, et al. (June 2000). "Identification and validation of a gene involved in anchorage-independent cell growth control using a library of randomized hairpin ribozymes". Genomics. 66 (3): 274–83. doi:10.1006/geno.2000.6230. PMID   10873382.
  6. 1 2 "Entrez Gene: PPAN peter pan homolog (Drosophila)".
  7. Pfister AS, Keil M, Kühl M (April 2015). "The Wnt Target Protein Peter Pan Defines a Novel p53-independent Nucleolar Stress-Response Pathway". The Journal of Biological Chemistry. 290 (17): 10905–18. doi: 10.1074/jbc.M114.634246 . PMC   4409253 . PMID   25759387.
  8. Dannheisig DP, Beck E, Calzia E, et al. (2019). "Loss of Peter Pan (PPAN) Affects Mitochondrial Homeostasis and Autophagic Flux". Cells. 8 (8): 894. doi: 10.3390/cells8080894 . PMC   6721654 . PMID   31416196.
  9. Keil M, Meyer MT, Dannheisig DP, et al. (May 2019). "Loss of Peter Pan protein is associated with cell cycle defects and apoptotic events". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1866 (5): 882–895. doi: 10.1016/j.bbamcr.2019.01.010 . PMID   30716409.
  10. Vitali P, Royo H, Seitz H, et al. (November 2003). "Identification of 13 novel human modification guide RNAs". Nucleic Acids Research. 31 (22): 6543–51. doi:10.1093/nar/gkg849. PMC   275545 . PMID   14602913.

Further reading