PSR J0855−4644

Last updated
PSR J0855-4644
Observation data
Epoch J2000.0        Equinox J2000.0 (ICRS)
Constellation Vela
Right ascension 08h 55m 36.18s [1]
Declination −46° 44 13.4 [1]
Apparent magnitude  (V)N/A
Distance 815 [2]   ly
(250 [2]   pc)
Spectral type Pulsar

PSR J0855-4644 is a pulsar in the constellation Vela, and was at one time thought possibly associated with supernova remnant RX J0852.0-4622. [2] However, this association is considered unlikely since a central compact object with better matching kinematics to the shell has been observed. [3]

Related Research Articles

<span class="mw-page-title-main">Pulsar wind nebula</span> Nebula powered by the pulsar wind of a pulsar

A pulsar wind nebula, sometimes called a plerion, is a type of nebula sometimes found inside the shell of a supernova remnant (SNR), powered by winds generated by a central pulsar. These nebulae were proposed as a class in 1976 as enhancements at radio wavelengths inside supernova remnants. They have since been found to be infrared, optical, millimetre, X-ray and gamma ray sources.

<span class="mw-page-title-main">3C 58</span> Supernova remnant

3C 58 or 3C58 is a pulsar and supernova remnant within the Milky Way. The object is listed as No. 58 in the Third Cambridge Catalogue of Radio Sources.

<span class="mw-page-title-main">Pulsar</span> Highly magnetized, rapidly rotating neutron star

A pulsar is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Earth, and is responsible for the pulsed appearance of emission. Neutron stars are very dense and have short, regular rotational periods. This produces a very precise interval between pulses that ranges from milliseconds to seconds for an individual pulsar. Pulsars are one of the candidates for the source of ultra-high-energy cosmic rays.

<span class="mw-page-title-main">Crab Pulsar</span> Pulsar in the constellation Taurus

The Crab Pulsar is a relatively young neutron star. The star is the central star in the Crab Nebula, a remnant of the supernova SN 1054, which was widely observed on Earth in the year 1054. Discovered in 1968, the pulsar was the first to be connected with a supernova remnant.

A pulsar kick is the name of the phenomenon that often causes a neutron star to move with a different, usually substantially greater, velocity than its progenitor star. The cause of pulsar kicks is unknown, but many astrophysicists believe that it must be due to an asymmetry in the way a supernova explodes. If true, this would give information about the supernova mechanism.

<span class="mw-page-title-main">Vela Pulsar</span> Multi-spectrum pulsar in the constellation Vela

The Vela Pulsar is a radio, optical, X-ray- and gamma-emitting pulsar associated with the Vela Supernova Remnant in the constellation of Vela. Its parent Type II supernova exploded approximately 11,000–12,300 years ago.

<span class="mw-page-title-main">Vela Supernova Remnant</span> Supernova remnant in the constellation Vela

The Vela supernova remnant is a supernova remnant in the southern constellation Vela. Its source Type II supernova exploded approximately 11,000 years ago. The association of the Vela supernova remnant with the Vela pulsar, made by astronomers at the University of Sydney in 1968, was direct observational evidence that supernovae form neutron stars.

<span class="mw-page-title-main">Radio-quiet neutron star</span> Neutron star that does not emit radio waves

A radio-quiet neutron star is a neutron star that does not seem to emit radio emissions, but is still visible to Earth through electromagnetic radiation at other parts of the spectrum, particularly X-rays and gamma rays.

<span class="mw-page-title-main">RX J0852.0−4622</span> Relatively young and nearby supernova remnant

RX J0852.0−4622 is a supernova remnant. The remnant is located in the southern sky in the constellation Vela ("sail"), and sits inside the much larger and older Vela Supernova Remnant. For this reason, RX J0852.0−4622 is often referred to as Vela Junior. There have been a minority of suggestions that the remnant may be a spurious identification of a complicated substructure within the larger and better studied Vela SNR, but most studies accept that G266.2−1.2 is a SNR in its own right. Indeed, its detection in the high energy Teraelectronvolt range by the High Energy Stereoscopic System in 2005 is strong confirmation of such.

PSR B0329+54 is a pulsar approximately 3,460 light-years away in the constellation of Camelopardalis. It completes one rotation every 0.71452 seconds and is approximately 5 million years old.

<span class="mw-page-title-main">NGC 2060</span> Star cluster in the constellation Dorado

NGC 2060 is a star cluster within the Tarantula Nebula in the Large Magellanic Cloud, very close to the larger NGC 2070 cluster containing R136. It was discovered by John Herschel in 1836. It is a loose cluster approximately 10 million years old, within one of the Tarantula Nebula's superbubbles formed by the combined stellar winds of the cluster or by old supernovae.

PSR B1828-11 is a pulsar approximately 10,000 light-years away in the constellation of Scutum. The star exhibits variations in the timing and shape of its pulses: this was at one stage interpreted as due to a possible planetary system in orbit around the pulsar, though the model required an anomalously large second period derivative of the pulse times. The planetary model was later discarded in favour of precession effects as the planets could not cause the observed shape variations of the pulses. While the generally accepted model is that the pulsar is a neutron star undergoing free precession, a model has been proposed that interprets the pulsar as a quark star undergoing forced precession due to an orbiting "quark planet". The entry for the pulsar on SIMBAD lists this hypothesis as being controversial.

PSR J1903+0327 is a millisecond pulsar in a highly eccentric binary orbit.

PSR J0108−1431 is a solitary pulsar located at a distance of about 130 parsecs (424 light-years) in the constellation Cetus. This pulsar was discovered in 1994 during the Parkes Southern Pulsar Survey. It is considered a very old pulsar with an estimated age of 166 million years and a rotation period of 0.8 seconds. The rotational energy being generated by the spin-down of this pulsar is 5.8 × 1023 W and the surface magnetic field is 2.5 × 107 T. As of 2008, it is the second faintest known pulsar.

<span class="mw-page-title-main">SN 386</span>

SN 386 is a probable transient astronomical event in the constellation Sagittarius, which appeared as a "guest star" that was reported by Chinese astronomers in 386 CE.

PSR J2124−3358 is a millisecond pulsar located in the constellation Microscopium. It is one of the brightest examples of its type in the X-ray spectrum. Discovered in 1997, no optical component was observed in 2003.

<span class="mw-page-title-main">Ingrid Stairs</span> Canadian astronomer

Ingrid Stairs is a Canadian astronomer currently based at the University of British Columbia. She studies pulsars and their companions as a way to study binary pulsar evolution, pulsar instrumentation and polarimetry, and Fast Radio Bursts (FRBs). She was awarded the 2017 Rutherford Memorial Medal for physics of the Royal Society of Canada, and was elected as a Fellow of the American Physical Society in 2018.

PSR J1141−6545 is a pulsar in the constellation of Musca. Located at 11h 41m 07.02s −65° 45′ 19.1″, it is a binary pair composed of a white dwarf star orbiting a pulsar. Because of this unusual configuration and the close proximity of the two stars it has been used to test several of Einstein's theories.

<span class="mw-page-title-main">Pulsar planet</span> Planets found orbiting pulsars, or rapidly rotating pulsars

Pulsar planets are planets that are orbiting pulsars. The first such planets to be discovered were around a millisecond pulsar in 1992 and were the first extrasolar planets to be confirmed as discovered. Pulsars are extremely precise clocks and even small planets can create detectable variations in pulsar traits; the smallest known exoplanet is a pulsar planet.

References

  1. 1 2 Kramer, M.; et al. (July 2003), "The Parkes Multibeam Pulsar Survey - III. Young pulsars and the discovery and timing of 200 pulsars", Monthly Notices of the Royal Astronomical Society, 342 (4): 1299–1324, arXiv: astro-ph/0303473 , Bibcode:2003MNRAS.342.1299K, doi:10.1046/j.1365-8711.2003.06637.x, S2CID   54637477.
  2. 1 2 3 Redman, M. P.; Meaburn, J. (January 2005), "A possible association of a young pulsar (PSR J0855-4644) with the young Vela supernova remnant RX J0852.0-4622", Monthly Notices of the Royal Astronomical Society, 356 (3): 969–973, Bibcode:2005MNRAS.356..969R, doi: 10.1111/j.1365-2966.2004.08523.x .
  3. Allen, G. E.; Chow, K.; DeLaney, T.; Filipović, M. D.; Houck, J. C.; Pannuti, T. G.; Stage, M. D. (2014-12-29). "ON THE EXPANSION RATE, AGE, AND DISTANCE OF THE SUPERNOVA REMNANT G266.2–1.2 (Vela Jr.)". The Astrophysical Journal. 798 (2): 82. arXiv: 1410.7435 . doi: 10.1088/0004-637x/798/2/82 . ISSN   1538-4357.