Paenibacillus vortex | |
---|---|
Figure 1: Colony organization of the P. vortex bacteria when grown on 15g/L peptone and 2.25% (w/v) agar for four days. The bright yellow dots are the vortices. The colonies were grown in a Petri dish size 8.8cm and stained with Coomassie dyes (Brilliant Blue). The colors were inverted to emphasize higher densities using the brighter shades of yellow. | |
Scientific classification | |
Domain: | |
Phylum: | |
Class: | |
Order: | |
Family: | |
Genus: | |
Binomial name | |
Paenibacillus vortex | |
Synonyms | |
Bacillus vortex Ash et al. 1994 |
Paenibacillus vortex is a species of pattern-forming bacteria, first discovered in the early 1990s by Eshel Ben-Jacob's group at Tel Aviv University. [1] It is a social microorganism that forms colonies with complex and dynamic architectures. P. vortex is mainly found in heterogeneous and complex environments, such as the rhizosphere, the soil region directly influenced by plant roots.
The genus Paenibacillus comprises facultative anaerobic, endospore-forming bacteria originally included within the genus Bacillus and then reclassified as a separate genus in 1993. [2] Bacteria in the genus have been detected in a variety of environments such as: soil, water, vegetable matter, forage and insect larvae, as well as clinical samples. [3] [4] [5] [6] Paenibacillus spp., including P. vortex, produce extracellular enzymes that catalyze a variety of synthetic reactions in industrial, agricultural and medical applications. [7] [8] [9] Various Paenibacillus spp. also produce antimicrobial substances that can affect micro-organisms such as fungi, in addition to soil and plant pathogenic bacteria. [10] [11] [12]
Paenibacillus vortex possesses advanced social motility employing cell-cell attractive and repulsive chemotactic signalling and physical links. When grown on soft surfaces (e.g. agar), the collective motility is reflected by the formation of foraging swarms [13] that act as arms sent out in search of food. These swarms have an aversion to crossing each other’s trail and collectively change direction when food is sensed. The “swarming intelligence” P. vortex, is further marked by the fact that of the swarms can even split and reunite when detecting scattered patches of nutrients. [13]
P. vortex is a social microorganism: when grown on under growth conditions that mimic natural environments such as hard surfaces it forms colonies of 109-1012 cells with remarkably complex and dynamic architectures (Figure 1). [1] [14] [15] Being part of a large cooperative, the bacteria can better compete for food resources and be protected against antibacterial assaults. [13] [14] Under laboratory growth conditions, similar to other social bacteria, P. vortex colonies behave much like a multi-cellular organism, with cell differentiation and task distribution. [16] [17] [18] [19] P. vortex is marked by its ability to generate special aggregates of dense bacteria that are pushed forward by repulsive chemotactic signals sent from the cells at the back. [15] [20] [21] [22] [23] [24] These rotating aggregates termed vortices (Figure 2), pave the way for the colony to expand. The vortices serve as building blocks of colonies with special modular organization (Figure 1). Accomplishing such intricate cooperative ventures requires sophisticated cell-cell communication, [14] [19] [25] [26] [27] including semantic and pragmatic aspects of linguistics. [19] Communicating with each other using a variety of chemical signals, bacteria exchange information regarding population size, a myriad of individual environmental measurements at different locations, their internal states and their phenotypic and epigenetic adjustments. The bacteria collectively sense the environment and execute distributed information processing to glean and assess relevant information. [14] [19] [28] The information is then used by the bacteria for reshaping the colony while redistributing tasks and cell epigenetic differentiations, for collective decision-making and for turning on and off defense and offense mechanisms needed to thrive in competitive environments, faculties that can be perceived as social intelligence of bacteria. [19]
The genome sequence of the P. vortex [29] is now available [GenBank: ADHJ00000000). The genome was sequenced by a hybrid approach using 454 Life Sciences and Illumina, achieving a total of 289X coverage, with 99.8% sequence identity between the two methods. The sequencing results were validated using a custom designed Agilent microarray expression chip submitted to EMBL-EBI [ArrayExpress: E-MEXP-3019 which represented the coding and the non-coding regions. Analysis of the P. vortex genome revealed 6,437 open reading frames (ORFs) and 73 non-coding RNA genes. The analysis also unveiled the P. vortex potential to produce a wealth of enzymes and proteases as well as a great variety of antimicrobial substances that affect a wide range of microorganisms. The possession of these advanced defense and offense strategies render Paenibacillus vortex as a rich source of useful genes for agricultural, medical, industrial and biofuel applications.
Comparative genomic analysis revealed that bacteria successful in heterogeneous and competitive environments often contain extensive signal transduction and regulatory networks. [30] [31] [32] Detailed comparative genomic analysis with a dataset of 500 complete bacterial genomes revealed that P. vortex has the third highest number of signal transduction genes, slightly below two other Paenibacillus species, Paenibacillus sp. JDR-2 and Paenibacillus sp. Y412MC10. [29] The comparative genomic analysis further revealed that these three Paenibacillus species also have the highest “Social-IQ” score among all 500 sequenced bacteria, over 3 standard deviations higher than average. The score is based on the number of genes which afford bacteria abilities to communicate and process environmental information (two-component and transcription-factor genes), to make decisions and to synthesize offensive (toxic) and defensive (neutralizing) agents as needed during chemical warfare with other microorganisms. [29] Defined this way, the Social-IQ score provides a measure of the genome capacity for social intelligence, hence it helps realizing social intelligence of bacteria.
Bacillus is a genus of Gram-positive, rod-shaped bacteria, a member of the phylum Bacillota, with 266 named species. The term is also used to describe the shape (rod) of other so-shaped bacteria; and the plural Bacilli is the name of the class of bacteria to which this genus belongs. Bacillus species can be either obligate aerobes which are dependent on oxygen, or facultative anaerobes which can survive in the absence of oxygen. Cultured Bacillus species test positive for the enzyme catalase if oxygen has been used or is present.
A microorganism, or microbe, is an organism of microscopic size, which may exist in its single-celled form or as a colony of cells.
An endospore is a dormant, tough, and non-reproductive structure produced by some bacteria in the phylum Bacillota. The name "endospore" is suggestive of a spore or seed-like form, but it is not a true spore. It is a stripped-down, dormant form to which the bacterium can reduce itself. Endospore formation is usually triggered by a lack of nutrients, and usually occurs in gram-positive bacteria. In endospore formation, the bacterium divides within its cell wall, and one side then engulfs the other. Endospores enable bacteria to lie dormant for extended periods, even centuries. There are many reports of spores remaining viable over 10,000 years, and revival of spores millions of years old has been claimed. There is one report of viable spores of Bacillus marismortui in salt crystals approximately 250 million years old. When the environment becomes more favorable, the endospore can reactivate itself into a vegetative state. Most types of bacteria cannot change to the endospore form. Examples of bacterial species that can form endospores include Bacillus cereus, Bacillus anthracis, Bacillus thuringiensis, Clostridium botulinum, and Clostridium tetani. Endospore formation is not found among Archaea.
The myxobacteria are a group of bacteria that predominantly live in the soil and feed on insoluble organic substances. The myxobacteria have very large genomes relative to other bacteria, e.g. 9–10 million nucleotides except for Anaeromyxobacter and Vulgatibacter. One species of myxobacteria, Minicystis rosea, has the largest known bacterial genome with over 16 million nucleotides. The second largest is another myxobacteria Sorangium cellulosum.
A microbiological culture, or microbial culture, is a method of multiplying microbial organisms by letting them reproduce in predetermined culture medium under controlled laboratory conditions. Microbial cultures are foundational and basic diagnostic methods used as research tools in molecular biology.
Polymyxins are antibiotics. Polymyxins B and E are used in the treatment of Gram-negative bacterial infections. They work mostly by breaking up the bacterial cell membrane. They are part of a broader class of molecules called nonribosomal peptides.
Paenibacillus is a genus of facultative anaerobic, endospore-forming bacteria, originally included within the genus Bacillus and then reclassified as a separate genus in 1993. Bacteria belonging to this genus have been detected in a variety of environments, such as: soil, water, rhizosphere, vegetable matter, forage and insect larvae, as well as clinical samples. The name reflects: Latin paene means almost, so the paenibacilli are literally "almost bacilli". The genus includes P. larvae, which causes American foulbrood in honeybees, P. polymyxa, which is capable of fixing nitrogen, so is used in agriculture and horticulture, the Paenibacillus sp. JDR-2 which is a rich source of chemical agents for biotechnology applications, and pattern-forming strains such as P. vortex and P. dendritiformis discovered in the early 90s, which develop complex colonies with intricate architectures as shown in the pictures:
Microbial intelligence is the intelligence shown by microorganisms. The concept encompasses complex adaptive behavior shown by single cells, and altruistic or cooperative behavior in populations of like or unlike cells mediated by chemical signalling that induces physiological or behavioral changes in cells and influences colony structures.
Myxococcus xanthus is a gram-negative, rod-shaped species of myxobacteria that exhibits various forms of self-organizing behavior in response to environmental cues. Under normal conditions with abundant food, it exists as a predatory, saprophytic single-species biofilm called a swarm. Under starvation conditions, it undergoes a multicellular development cycle.
Bacteria are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and the fixation of nitrogen from the atmosphere. The nutrient cycle includes the decomposition of dead bodies; bacteria are responsible for the putrefaction stage in this process. In the biological communities surrounding hydrothermal vents and cold seeps, extremophile bacteria provide the nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane, to energy. Bacteria also live in symbiotic and parasitic relationships with plants and animals. Most bacteria have not been characterised and there are many species that cannot be grown in the laboratory. The study of bacteria is known as bacteriology, a branch of microbiology.
Medical microbiology, the large subset of microbiology that is applied to medicine, is a branch of medical science concerned with the prevention, diagnosis and treatment of infectious diseases. In addition, this field of science studies various clinical applications of microbes for the improvement of health. There are four kinds of microorganisms that cause infectious disease: bacteria, fungi, parasites and viruses, and one type of infectious protein called prion.
Dictyostelium discoideum is a species of soil-dwelling amoeba belonging to the phylum Amoebozoa, infraphylum Mycetozoa. Commonly referred to as slime mold, D. discoideum is a eukaryote that transitions from a collection of unicellular amoebae into a multicellular slug and then into a fruiting body within its lifetime. Its unique asexual life cycle consists of four stages: vegetative, aggregation, migration, and culmination. The life cycle of D. discoideum is relatively short, which allows for timely viewing of all stages. The cells involved in the life cycle undergo movement, chemical signaling, and development, which are applicable to human cancer research. The simplicity of its life cycle makes D. discoideum a valuable model organism to study genetic, cellular, and biochemical processes in other organisms.
A prokaryote is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word prokaryote comes from the Greek πρό and κάρυον. In the two-empire system arising from the work of Édouard Chatton, prokaryotes were classified within the empire Prokaryota. But in the three-domain system, based upon molecular analysis, prokaryotes are divided into two domains: Bacteria and Archaea. Organisms with nuclei are placed in a third domain, Eukaryota. Prokaryotes evolved before eukaryotes.
Roberto Kolter is Professor of Microbiology, Emeritus at Harvard Medical School, an author, and past president of the American Society for Microbiology. Kolter has been a professor at Harvard Medical School since 1983 and was Co-director of Harvard's Microbial Sciences Initiative from 2003-2018. During the 35-year term of the Kolter laboratory from 1983 to 2018, more than 130 graduate student and postdoctoral trainees explored an eclectic mix of topics gravitating around the study of microbes. Kolter is a fellow of the American Association for the Advancement of Science and of the American Academy of Microbiology.
Microorganisms engage in a wide variety of social interactions, including cooperation. A cooperative behavior is one that benefits an individual other than the one performing the behavior. This article outlines the various forms of cooperative interactions seen in microbial systems, as well as the benefits that might have driven the evolution of these complex behaviors.
Eshel Ben-Jacob, was a theoretical and experimental physicist at Tel Aviv University, holder of the Maguy-Glass Chair in Physics of Complex Systems, and Fellow of the Center for Theoretical Biological Physics (CTBP) at Rice University. During the 1980s he became a leader in the theory of self-organization and pattern formation in open systems, later extending this work to adaptive complex systems and biocomplexity. In the late 1980s, he turned to study of bacterial self-organization, He developed new pattern forming bacteria species, becoming a pioneer in the study of bacterial intelligence and social behaviors of bacteria.
Paenibacillus dendritiformis is a species of pattern-forming bacteria, first discovered in the early 90s by Eshel Ben-Jacob's group. It is a social microorganism that forms colonies with complex and dynamic architectures. The genus Paenibacillus comprises facultative anaerobic, endospore-forming bacteria originally included within the genus Bacillus and then reclassified as a separate genus in 1993. Bacteria belonging to this genus have been detected in a variety of environments such as: soil, water, rhizosphere, vegetable matter, forage and insect larvae.
Stigmatella aurantiaca is a member of myxobacteria, a group of gram-negative bacteria with a complex developmental life cycle.
Myxococcus is a genus of bacteria in the family Myxococcaceae. Myxococci are Gram-negative, spore-forming, chemoorganotrophic, obligate aerobes. They are elongated rods with rounded or tapered ends, and they are nonflagellated. The cells move by gliding and can predate other bacteria. The genus has been isolated from soil.
Social motility describes the motile movement of groups of cells that communicate with each other to coordinate movement based on external stimuli. There are multiple varieties of each kingdom that express social motility that provides a unique evolutionary advantages that other species do not possess. This has made them lethal killers such as African trypanosomiasis, or Myxobacteria. These evolutionary advantages have proven to increase survival rate among socially motile bacteria whether it be the ability to evade predators or communication within a swarm to form spores for long term hibernation in times of low nutrients or toxic environments.