Penicillium coprobium

Last updated

Penicillium coprobium
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Eurotiomycetes
Order: Eurotiales
Family: Aspergillaceae
Genus: Penicillium
Species:
P. coprobium
Binomial name
Penicillium coprobium
Frisvad, J.C.; Filtenborg, O. 1989 [1]
Type strain
ATCC 64630, CBS 184.88, IBT HOUT6, NRRL 13626 [2]

Penicillium coprobium is an anamorph fungus species of the genus of Penicillium which produces pyripyropene A, roquefortine C, penicillic acid and patulin. [1] [3] [4] [5] [6] [7] [8] [9]

Contents

See also

Further reading

Related Research Articles

<span class="mw-page-title-main">Cytochrome P450</span> Class of enzymes

Cytochromes P450 are a superfamily of enzymes containing heme as a cofactor that mostly, but not exclusively, function as monooxygenases. In mammals, these proteins oxidize steroids, fatty acids, and xenobiotics, and are important for the clearance of various compounds, as well as for hormone synthesis and breakdown. In 1963, Estabrook, Cooper, and Rosenthal described the role of CYP as a catalyst in steroid hormone synthesis and drug metabolism. In plants, these proteins are important for the biosynthesis of defensive compounds, fatty acids, and hormones.

<span class="mw-page-title-main">CYP2A6</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 2A6 is a member of the cytochrome P450 mixed-function oxidase system, which is involved in the metabolism of xenobiotics in the body. CYP2A6 is the primary enzyme responsible for the oxidation of nicotine and cotinine. It is also involved in the metabolism of several pharmaceuticals, carcinogens, and a number of coumarin-type alkaloids. CYP2A6 is the only enzyme in the human body that appreciably catalyzes the 7-hydroxylation of coumarin, such that the formation of the product of this reaction, 7-hydroxycoumarin, is used as a probe for CYP2A6 activity.

<span class="mw-page-title-main">Mevastatin</span> Chemical compound

Mevastatin is a hypolipidemic agent that belongs to the statins class.

<span class="mw-page-title-main">CYP2C8</span> Gene-coded protein involved in metabolism of xenobiotics

Cytochrome P4502C8 (CYP2C8) is a member of the cytochrome P450 mixed-function oxidase system involved in the metabolism of xenobiotics in the body. Cytochrome P4502C8 also possesses epoxygenase activity, i.e. it metabolizes long-chain polyunsaturated fatty acids, e.g. arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid, and Linoleic acid to their biologically active epoxides.

<span class="mw-page-title-main">21-Hydroxylase</span> Human enzyme that hydroxylates steroids

Steroid 21-hydroxylase is a protein that in humans is encoded by the CYP21A2 gene. The protein is an enzyme that hydroxylates steroids at the C21 position on the molecule. Naming conventions for enzymes are based on the substrate acted upon and the chemical process performed. Biochemically, this enzyme is involved in the biosynthesis of the adrenal gland hormones aldosterone and cortisol, which are important in blood pressure regulation, sodium homeostasis and blood sugar control. The enzyme converts progesterone and 17α-hydroxyprogesterone into 11-deoxycorticosterone and 11-deoxycortisol, respectively, within metabolic pathways which in humans ultimately lead to aldosterone and cortisol creation—deficiency in the enzyme may cause congenital adrenal hyperplasia.

<span class="mw-page-title-main">Steroid 11β-hydroxylase</span> Protein found in mammals

Steroid 11β-hydroxylase, also known as steroid 11β-monooxygenase, is a steroid hydroxylase found in the zona glomerulosa and zona fasciculata of the adrenal cortex. Named officially the cytochrome P450 11B1, mitochondrial, it is a protein that in humans is encoded by the CYP11B1 gene. The enzyme is involved in the biosynthesis of adrenal corticosteroids by catalyzing the addition of hydroxyl groups during oxidation reactions.

<span class="mw-page-title-main">CYP3A5</span> Enzyme involved in drug metabolism

Cytochrome P450 3A5 is a protein that in humans is encoded by the CYP3A5 gene.

<span class="mw-page-title-main">CYP2C18</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 2C18 is a protein that in humans is encoded by the CYP2C18 gene.

Cytochrome P450, family 3, subfamily A, also known as CYP3A, is a human gene locus. A homologous locus is found in mice.

<span class="mw-page-title-main">FMO5</span> Protein-coding gene in the species Homo sapiens

Dimethylaniline monooxygenase [N-oxide-forming] 5 is an enzyme that in humans is encoded by the FMO5 gene.

<span class="mw-page-title-main">CYP2A13</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 2A13 is a protein that in humans is encoded by the CYP2A13 gene.

<span class="mw-page-title-main">CYP3A43</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 3A43 is a protein that in humans is encoded by the CYP3A43 gene.

<span class="mw-page-title-main">CYP4F12</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 4F12 is a protein that in humans is encoded by the CYP4F12 gene.

<span class="mw-page-title-main">CYP4F3</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 4F3, also leukotriene-B(4) omega-hydroxylase 2, is an enzyme that in humans is encoded by the CYP4F3 gene. CYP4F3 encodes two distinct enzymes, CYP4F3A and CYP4F3B, which originate from the alternative splicing of a single pre-mRNA precursor molecule; selection of either isoform is tissue-specific with CYP3F3A being expressed mostly in leukocytes and CYP4F3B mostly in the liver.

<span class="mw-page-title-main">CYP20A1</span> Protein-coding gene in the species Homo sapiens

CYP20A1 is a protein which in humans is encoded by the CYP20A1 gene.

<span class="mw-page-title-main">CYP2A7</span> Protein-coding gene in the species Homo sapiens

CYP2A7 is a protein that in humans is encoded by the CYP2A7 gene.

<span class="mw-page-title-main">Pleuromutilin</span> Chemical compound

Pleuromutilin and its derivatives are antibacterial drugs that inhibit protein synthesis in bacteria by binding to the peptidyl transferase component of the 50S subunit of ribosomes.

<i>Penicillium rubens</i> Species of fungus

Penicillium rubens is a species of fungus in the genus Penicillium and was the first species known to produce the antibiotic penicillin. It was first described by Philibert Melchior Joseph Ehi Biourge in 1923. For the discovery of penicillin from this species Alexander Fleming shared the Nobel Prize in Physiology or Medicine in 1945. The original penicillin-producing type has been variously identified as Penicillium rubrum, P. notatum, and P. chrysogenum among others, but genomic comparison and phylogenetic analysis in 2011 resolved that it is P. rubens. It is the best source of penicillins and produces benzylpenicillin (G), phenoxymethylpenicillin (V) and octanoylpenicillin (K). It also produces other important bioactive compounds such as andrastin, chrysogine, fungisporin, roquefortine, and sorbicillins.

Cytochrome P450, family 53, also known as CYP53, is a cytochrome P450 monooxygenase family in fungi related to hydrocarbon assimilation. They are distributed in both Ascomycota and Basidiomycota, could be used as anti-fungal drug target. The first gene identified in this family is the CYP53A1 from Aspergillus niger encoding the Benzoate 4-monooxygenase (bphA).

Cytochrome P450, family 107, also known as CYP107, is a cytochrome P450 monooxygenase family in bacteria, found to be conserved and highly populated in Streptomyces and Bacillus species. The first gene identified in this family is Cytochrome P450 eryF (CYP107A1) from Saccharopolyspora erythraea. Many enzymes of this family are involved in the synthesis of macrolide antibiotics. The members of this family are widely distributed in Alphaproteobacteria, cyanobacterial, Mycobacterium, Bacillota, and Streptomyces species, which may be due to horizontal gene transfer driven by selection pressure.

References

  1. 1 2 MycoBank
  2. Straininfo of Penicillium coprobium
  3. UniProt
  4. ATCC
  5. Hu, J; Okawa, H; Yamamoto, K; Oyama, K; Mitomi, M; Anzai, H (2011). "Characterization of two cytochrome P450 monooxygenase genes of the pyripyropene biosynthetic gene cluster from Penicillium coprobium". The Journal of Antibiotics. 64 (3): 221–7. doi: 10.1038/ja.2010.162 . PMID   21224862.
  6. Jan Dijksterhuis, Robert A. Samson (2007). Food Mycology: A Multifaceted Approach to Fungi and Food. CRC Press. ISBN   978-1420020984.
  7. V. Betina (1993). Chromatography of Mycotoxins: Techniques and Applications. Elsevier. ISBN   0080858627.
  8. Tiffany L. Weir/ Colorado State University (2008). Interactions Between Plants and an Opportunistic Human Pathogen, Pseudomonas Aeruginosa. ProQuest. ISBN   978-0549716303.
  9. Rasmussen, T. B. (2005). "Identity and effects of quorum-sensing inhibitors produced by Penicillium species". Microbiology. 151 (5): 1325–1340. doi: 10.1099/mic.0.27715-0 . PMID   15870443.