Penicillium madriti

Last updated

Penicillium madriti
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Eurotiomycetes
Order: Eurotiales
Family: Aspergillaceae
Genus: Penicillium
Species:
P. madriti
Binomial name
Penicillium madriti
Smith, G. 1961 [1]
Type strain
ATCC 18233, BB389, BCRC 31672, CBS 347.61, CCRC 31672, FRR 3452, IFO 9148, IHEM 5838, IMI 086563, KCTC 6415, LSHB BB389, LSHTM BB.389, MUCL 2456, MUCL 31193, NBRC 9148, NRRL 3452, NRRL A-11031, QM 7959 [2]
Synonyms

Penicillium castellonense [1]

Penicillium madriti is an anamorph species of the genus of Penicillium which produces orsellinic acid. [1] [3] [4] [5] [6]

Related Research Articles

<span class="mw-page-title-main">Penicillin</span> Group of antibiotics derived from Penicillium fungi

Penicillins are a group of β-lactam antibiotics originally obtained from Penicillium moulds, principally P. chrysogenum and P. rubens. Most penicillins in clinical use are synthesised by P. chrysogenum using deep tank fermentation and then purified. A number of natural penicillins have been discovered, but only two purified compounds are in clinical use: penicillin G and penicillin V. Penicillins were among the first medications to be effective against many bacterial infections caused by staphylococci and streptococci. They are still widely used today for different bacterial infections, though many types of bacteria have developed resistance following extensive use.

<i>Penicillium</i> Genus of fungi

Penicillium is a genus of ascomycetous fungi that is part of the mycobiome of many species and is of major importance in the natural environment, in food spoilage, and in food and drug production.

<span class="mw-page-title-main">Blue cheese</span> Cheese with blue veins of mold

Blue cheese is any of a wide range of cheeses made with the addition of cultures of edible molds, which create blue-green spots or veins through the cheese. Blue cheeses vary in taste from very mild to strong, and from slightly sweet to salty or sharp; in colour from pale to dark; and in consistency from liquid or very soft to firm or hard. They may have a distinctive smell, either from the mold or from various specially cultivated bacteria such as Brevibacterium linens.

<span class="mw-page-title-main">Maleimide</span> Chemical compound

Maleimide is a chemical compound with the formula H2C2(CO)2NH (see diagram). This unsaturated imide is an important building block in organic synthesis. The name is a contraction of maleic acid and imide, the -C(O)NHC(O)- functional group. Maleimides also describes a class of derivatives of the parent maleimide where the NH group is replaced with alkyl or aryl groups such as a methyl or phenyl, respectively. The substituent can also be a small molecule (such as biotin, a fluorescent dye, an oligosaccharide, or a nucleic acid), a reactive group, or a synthetic polymer such as polyethylene glycol. Human hemoglobin chemically modified with maleimide-polyethylene glycol is a blood substitute called MP4.

<span class="mw-page-title-main">Ellagic acid</span> Natural phenol antioxidant

Ellagic acid is a polyphenol found in numerous fruits and vegetables. It is the dilactone of hexahydroxydiphenic acid.

<span class="mw-page-title-main">Beta-ketoacyl-ACP synthase</span> Enzyme

In molecular biology, Beta-ketoacyl-ACP synthase EC 2.3.1.41, is an enzyme involved in fatty acid synthesis. It typically uses malonyl-CoA as a carbon source to elongate ACP-bound acyl species, resulting in the formation of ACP-bound β-ketoacyl species such as acetoacetyl-ACP.

Orsellinic acid, more specifically o-orsellinic acid, is a phenolic acid. It is of importance in the biochemistry of lichens, from which it can be extracted. It is a common subunit of depsides.

<span class="mw-page-title-main">Cutinase</span> Class of enzymes

The enzyme cutinase is a member of the hydrolase family. It catalyzes the following reaction:

Penicillopepsin is an enzyme. This enzyme catalyses the following chemical reaction

Medicinal fungi are fungi that contain metabolites or can be induced to produce metabolites through biotechnology to develop prescription drugs. Compounds successfully developed into drugs or under research include antibiotics, anti-cancer drugs, cholesterol and ergosterol synthesis inhibitors, psychotropic drugs, immunosuppressants and fungicides.

Penicillium brefeldianum is an anamorph fungus species of the genus of Penicillium which produces Brefeldin A a fungal metabolite.

Penicillium fennelliae is an anamorph species of the genus of Penicillium which produces patulin, orsellinic acid and penicillinic acid.

Penicillium gladioli is a species of the genus of Penicillium which occurs on corms of the plant Gladiolus debtis. Penicillium gladioli produces gladiolic acid and patulin.

Penicillium isariiforme is an anamorph, phototropic species of the genus of Penicillium which produce secalonic acid D and F.

Penicillium ochrochloron is a species of fungus in the genus Penicillium which produces penitrem A.

Penicillium oxalicum is an anamorph species of the genus Penicillium which was isolated from rhizosphere soil of pearl millet. Penicillium oxalicum produces secalonic acid D, chitinase, oxalic acid, oxaline and β-N-acetylglucosaminidase and occurs widespread in food and tropical commodities. This fungus could be used against soilborne diseases like downy mildew of tomatoes

Penicillium pinophilum is a species of fungus in the genus Penicillium which was isolated from a radio set in Papua New Guinea. Penicillium pinophilum produces 3-O-methylfunicone and mycophenolic acid

Penicillium rubrum is a species of fungus in the genus Penicillium which produces kojic acid, mitorubrin, mitorubrinol, rubratoxin A, rubratoxin B rubralactone, rubramin and occurs in grain corn and soybeans. Penicillium rubrum is similar to the species Penicillium chrysogenum.

Penicillium velutinum is an anamorph species of fungus in the genus Penicillium which was isolated from soil in the United States. It produces verruculogen, verrucosidin, verruculotoxin, decalpenic acid, dehydroaltenusin, cyciooctasulfur, atrovenetinone, altenusin and penitrem A

<span class="mw-page-title-main">Lichexanthone</span> Chemical compound found in some lichens

Lichexanthone is an organic compound in the structural class of chemicals known as xanthones. Lichexanthone was first isolated and identified by Japanese chemists from a species of leafy lichen in the 1940s. The compound is known to occur in many lichens, and it is important in the taxonomy of species in several genera, such as Pertusaria and Pyxine. More than a dozen lichen species have a variation of the word lichexanthone incorporated as part of their binomial name. The presence of lichexanthone in lichens causes them to fluoresce a greenish-yellow colour under long-wavelength UV light; this feature is used to help identify some species. Lichexanthone is also found in several plants, and some species of fungi that do not form lichens.

References

  1. 1 2 3 MycoBank
  2. Straininfo of Penicillium madriti
  3. UniProt
  4. ATCC
  5. Birkinshaw, J. H.; Gowlland, A (1962). "Studies in the biochemistry of micro-organisms. 110. Production and biosynthesis of orsellinic acid by Penicillium madriti G. Smith". The Biochemical Journal. 84: 342–7. doi:10.1042/bj0840342. PMC   1243673 . PMID   13869400.
  6. Robert A. Samson, J I Pitt (2000). Integration of Modern Taxonomic Methods For Penicillium and Aspergillus Classification. CRC Press. ISBN   9058231593.

Further reading