Penicillium steckii

Last updated

Penicillium steckii
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Eurotiomycetes
Order: Eurotiales
Family: Aspergillaceae
Genus: Penicillium
Species:
P. steckii
Binomial name
Penicillium steckii
Zalessky, K.M. 1927 [1]
Type strain
CBS 260.55 [2]
Synonyms

Penicillium sumatraense, Penicillium baradicum [1]

Penicillium steckii is a species of fungus in the genus Penicillium which produces citrinin, tanzawaic acid E, tanzawaic acid F. [1] [2] [3] [4] [5]

Related Research Articles

<span class="mw-page-title-main">Citrinin</span> Chemical compound

Citrinin is a mycotoxin which is often found in food. It is a secondary metabolite produced by fungi that contaminates long-stored food and it causes different toxic effects, like nephrotoxic, hepatotoxic and cytotoxic effects. Citrinin is mainly found in stored grains, but sometimes also in fruits and other plant products.

<span class="mw-page-title-main">Cyclopiazonic acid</span> Chemical compound

Cyclopiazonic acid (α-CPA), a mycotoxin and a fungal neurotoxin, is made by the molds Aspergillus and Penicillium. It is an indole-tetramic acid that serves as a toxin due to its ability to inhibit calcium-dependent ATPases found in the endoplasmic and sarcoplasmic reticulum. This inhibition disrupts the muscle contraction-relaxation cycle and the calcium gradient that is maintained for proper cellular activity in cells.

Mycotoxicology is the branch of mycology that focuses on analyzing and studying the toxins produced by fungi, known as mycotoxins. In the food industry it is important to adopt measures that keep mycotoxin levels as low as practicable, especially those that are heat-stable. These chemical compounds are the result of secondary metabolism initiated in response to specific developmental or environmental signals. This includes biological stress from the environment, such as lower nutrients or competition for those available. Under this secondary path the fungus produces a wide array of compounds in order to gain some level of advantage, such as incrementing the efficiency of metabolic processes to gain more energy from less food, or attacking other microorganisms and being able to use their remains as a food source.

Penicillium charlesii is a fungus species of the genus of Penicillium which produces galactocarolose and Citreoviridin.

Penicillium citrinum is an anamorph, mesophilic fungus species of the genus of Penicillium which produces tanzawaic acid A-D, ACC, Mevastatin, Quinocitrinine A, Quinocitrinine B, and nephrotoxic citrinin. Penicillium citrinum is often found on moldy citrus fruits and occasionally it occurs in tropical spices and cereals. This Penicillium species also causes mortality for the mosquito Culex quinquefasciatus. Because of its mesophilic character, Penicillium citrinum occurs worldwide. The first statin (Mevastatin) was 1970 isolated from this species.

Penicillium concentricum is a coprophilic, anamorph fungus species of the genus of Penicillium which produces roquefortine C and patulin.

Penicillium corylophilum is a species of the genus of Penicillium which occurs in damp buildings in United States, Canada and western Europe but it can also be found in a variety of foods and mosquitoes. Penicillium corylophilum produces the alkaloid epoxyagroclavine and citrinin and is a pathogen to mosquitoes.

Penicillium cyaneum is a species of the genus of Penicillium which was isolated from an oil-field. Penicillium cyaneum produces fatty acid, Brefeldin A and the antibiotic Cyanein

Penicillium decaturense is a species of the genus of Penicillium which was isolated from a fungus in North America. Penicillium decaturense produces citrinin, 15-Deoxyoxalicine B, decaturins A and decaturins A

Penicillium dipodomyicola is a species of the genus of Penicillium which produces peniphenone A, peniphenone B, peniphenone C, peniphenone D, cyclopiazonic acid and patulin.

Penicillium gorlenkoanum is a species of the genus of Penicillium which produces citrinin, costaclavine and epicostaclavine.

Yellowed rice refers to three kinds of rice grains contaminated with different strains of Penicillium fungi—Yellow rice, Citrinum yellow rice, and Islandia yellow rice. These rice grains were first identified in Japan in 1964, after the research was interrupted by World War II. The first of the yellowed rice strains has been linked to shoshin-kakke. Citrinum yellow rice and Islandia yellow rice are not known to have caused any adverse effects in human populations.

Penicillium novae-zelandiae is an anamorph species of fungus in the genus Penicillium which was isolated from the plant Festuca novae-zelandiae. Penicillium novae-zelandiae produces patulin, 3-hydroxybenzyl alcohol and gentisyl alcohol

Penicillium paneum is a species of fungus in the genus Penicillium which can spoil cereal grains. Penicillium paneum produces 1-Octen-3-ol and penipanoid A, penipanoid B, penipanoid C, patulin and roquefortine C

Penicillium paxilli is an anamorph, saprophytic species of the genus Penicillium which produces paxilline, paxisterol, penicillone, pyrenocine A, paspaline B and verruculogene. Penicillium paxilli is used as a model to study the biochemistry of the indol-diterepene biosynthesis

Penicillium tricolor is a species of fungus in the genus Penicillium which was isolated from wheat in Canada. Penicillium tricolor produces xanthomegnin, viomellein, vioxanthin, terrestric acid, rugulosuvine, verrucofortine, puberuline, asteltoxin

Penicillium turbatum is an anamorph species of fungus in the genus Penicillium which was isolated from Taxus baccata. Penicillium turbatum produces pipolythiopiperazinedione-antibiotics, hyalodendrin A and hadacitin.

Penicillium westlingii is a species of fungus in the genus Penicillium which was isolated from soil near Poznan in Poland. Penicillium westlingii produces citrinin and sterol.

Penicillium verrucosum is a psychrophilic fungus which was discovered in Belgium and introduced by Dierckx in 1901. Six varieties of this species have been recognized based primarily on differences in colony colour: P. verrucosum var. album, P. verrucosum var. corymbiferum, P. verrucosum var. cyclopium, P. verrucosum var. ochraceum, P. verrucosum var. melanochlorum and P. verrucosum var. verrucosum. This fungus has important implications in food, specifically for grains and other cereal crops on which it grows. Its growth is carefully regulated in order to reduce food spoilage by this fungi and its toxic products. The genome of P. verrucosum has been sequenced and the gene clusters for the biosyntheses of its mycotoxins have been identified.

<span class="mw-page-title-main">Penitanzacid F</span> Chemical compound

Penitanzacid F was found as one of the twelve new tanzawaic acid derivatives, which were the secondary metabolites of the fungi Pencillum sp. KWF32 isolated from the tissues of Bathymodiolus sp. collected in the cold spring area of the South China Sea in 2021.

References

  1. 1 2 3 MycoBank
  2. 1 2 UniProt
  3. Cox, Richard H.; Hernandez, Oscar; Dorner, Joe W.; Cole, Richard J.; Fennell, Dorothy I. (1979). "A new isochroman mycotoxin isolated from Penicillium steckii". Journal of Agricultural and Food Chemistry. 27 (5): 999–1001. doi:10.1021/jf60225a012. PMID   546963.
  4. Malmstrøm, J; Christophersen, C; Frisvad, J. C. (2000). "Secondary metabolites characteristic of Penicillium citrinum, Penicillium steckii and related species". Phytochemistry. 54 (3): 301–9. doi:10.1016/s0031-9422(00)00106-0. PMID   10870185.
  5. Jabbar, A.; Rahim, A. (1962). "Citrinin from Penicillium steckii zaleski". Journal of Pharmaceutical Sciences. 51 (6): 595–596. doi:10.1002/jps.2600510625.

Further reading