Penzhin Tidal Power Plant Project

Last updated
Penzhin Tidal Power Plant
Penzhin Tidal Power Plant Project
Country Russia
Location Penzhin Bay
Coordinates 61°N162°E / 61°N 162°E / 61; 162 Coordinates: 61°N162°E / 61°N 162°E / 61; 162
StatusProposed
Power generation
Nameplate capacity
  • 87,000 MW

The Penzhin Tidal Power Plant Project is a set of proposals for construction of a tidal power plant in the Penzhin Bay, which is an upper right arm of Shelikhov Bay in the north-east corner of the Sea of Okhotsk. Because Penzhin Bay has one of the strongest tides in the world, there have been several power station proposals. One proposed variant presumes an installed capacity of 87  GW and annual production of 200  TWh. [1]

Contents

Geographically, the dam of the power station would extend through the administrative border of Magadan Oblast and Kamchatka Krai of Russia.

General information

The tides in Penzhin Bay are 9 metres (30 ft) high, and reach 12.9 metres (42 ft) in the case of spring tides, which is the highest magnitude for the Pacific Ocean.[ citation needed ] As the area of the bay basin is 20,530 km2 (7,930 mi2), it corresponds to diurnal discharge of 360–530 km3 (86–130 cu mi). This water rate is 20–30 times higher than that of the world's biggest river, the Amazon River. Two projects were developed for tidal power stations. The first would use the entire basin of the bay. The second proposes a smaller-scale plant, using the northern part of the basin with higher tides: [2]

VariantTide altitude,
m / ft
Capacity,
GW
Annual
production, TW·h
Time
of research
South site11 / 3687,1190–2051972–1996
North site13.4 / 4421,4501983–1996

Due to the lack of existing local energy consumers or long-distance power distribution infrastructure, there are suggestions for the station to provide power-consuming production. One such consumer, for example, would be the production of liquid hydrogen.[ citation needed ]

Hydrological potential of the bay

Three types of tides. The tides of Shelikhov Bay are of the diurnal type. Tide type.svg
Three types of tides. The tides of Shelikhov Bay are of the diurnal type.

The tides in the Penzhin Bay of the Sea of Okhotsk are the highest for the Pacific Ocean, reaching a height of 13.4 metres (44 ft). [3] The tides in Shelikhov Bay are of the diurnal type. The area of Penzhin Bay basin is 20,530 km2. [2] [4] Given that the average magnitude of tide is equal to 10 metres (33 ft), this gives the diurnal flow of water in the bay as 410.6 cubic kilometres (98.5 cu mi) or average discharge 4.75×106 m3•s−1.

The passing stream has its own potential energy, which in the gravity field of Earth is above zero only in the case of non-zero head of water () and can be expressed as follows:

, (1)

where denotes potential energy; — density of sea water, equal to 1,027 kg/m3; — area of basin; — height of the tide and gravitational acceleration, set to 9.81 m/s2. The part of the expression in brackets denotes terms defining the mass of water passing through the basin daily.

As can be seen in formula (1), the potential energy becomes zero in the case of zero head of water and in the case of equal heights of head and tide. If considering this formula as a function of head level (), it has a form of parabolic dependence, with its maximum at = 2• or at m. This value of gives two times lower height of tide in the bay and twice smaller average discharge of water — 5 m and 2.38×106 m3•s−1 (205.3 km3/day), correspondingly.

The substitution of obtained parameters into (1) and dividing it by the day length in seconds gives the average capacity 120  GW. The latter one yields 1,054 TW•h or 3.79×1018  Joules of energy annually. Depending on the efficiency of conversion of potential energy into electricity, the total quantity of electricity and electric capacity will have somewhat lower values. If one assumes an efficiency of conversion of 96%, this gives an average electric capacity of 115 GW and an available amount of electricity of 1,012 TW•h or 3.64×1018 J per year.

See also

Related Research Articles

<span class="mw-page-title-main">Tide</span> Rise and fall of the sea level under astronomical gravitational influences

Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon and are also caused by the Earth and Moon orbiting one another.

Cook Strait separates the North and South Islands of New Zealand. The strait connects the Tasman Sea on the northwest with the South Pacific Ocean on the southeast. It is 22 kilometres (14 mi) wide at its narrowest point, and is considered one of the most dangerous and unpredictable waters in the world. Regular ferry services run across the strait between Picton in the Marlborough Sounds and Wellington.

<span class="mw-page-title-main">Ground state</span> Lowest energy level of a quantum system

The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. In quantum field theory, the ground state is usually called the vacuum state or the vacuum.

<span class="mw-page-title-main">Tidal resonance</span> Enhanced tide due to ocean resonance

In oceanography, a tidal resonance occurs when the tide excites one of the resonant modes of the ocean. The effect is most striking when a continental shelf is about a quarter wavelength wide. Then an incident tidal wave can be reinforced by reflections between the coast and the shelf edge, the result producing a much higher tidal range at the coast.

<span class="mw-page-title-main">Tidal power</span> Technology to convert the energy from tides into useful forms of power

Tidal power or tidal energy is harnessed by converting energy from tides into useful forms of power, mainly electricity using various methods.

<span class="mw-page-title-main">Amphidromic point</span> Location at which there is little or no tide

An amphidromic point, also called a tidal node, is a geographical location which has zero tidal amplitude for one harmonic constituent of the tide. The tidal range for that harmonic constituent increases with distance from this point, though not uniformly. As such, the concept of amphidromic points is crucial to understanding tidal behaviour. The term derives from the Greek words amphi ("around") and dromos ("running"), referring to the rotary tides which circulate around amphidromic points.

The self-ionization of water (also autoionization of water, and autodissociation of water) is an ionization reaction in pure water or in an aqueous solution, in which a water molecule, H2O, deprotonates (loses the nucleus of one of its hydrogen atoms) to become a hydroxide ion, OH. The hydrogen nucleus, H+, immediately protonates another water molecule to form a hydronium cation, H3O+. It is an example of autoprotolysis, and exemplifies the amphoteric nature of water.

<span class="mw-page-title-main">Minas Basin</span> Body of water

The Minas Basin is an inlet of the Bay of Fundy and a sub-basin of the Fundy Basin located in Nova Scotia, Canada. It is known for its extremely high tides.

<span class="mw-page-title-main">Tidal range</span> Vertical difference between the high tide and the succeeding low tide

Tidal range is the difference in height between high tide and low tide. Tides are the rise and fall of sea levels caused by gravitational forces exerted by the Moon and Sun and the rotation of Earth. Tidal range depends on time and location.

<span class="mw-page-title-main">Rance Tidal Power Station</span> Dam in Brittany

The Rance Tidal Power Station is a tidal power station located on the estuary of the Rance River in Brittany, France.

Earth tide is the displacement of the solid earth's surface caused by the gravity of the Moon and Sun. Its main component has meter-level amplitude at periods of about 12 hours and longer. The largest body tide constituents are semi-diurnal, but there are also significant diurnal, semi-annual, and fortnightly contributions. Though the gravitational force causing earth tides and ocean tides is the same, the responses are quite different.

<span class="mw-page-title-main">Penzhina Bay</span>

Penzhina Bay is a long and narrow bay off the northwestern coast of Kamchatka, Russia.

<span class="mw-page-title-main">Theory of tides</span> Scientific interpretation of tidal forces

The theory of tides is the application of continuum mechanics to interpret and predict the tidal deformations of planetary and satellite bodies and their atmospheres and oceans under the gravitational loading of another astronomical body or bodies.

<span class="mw-page-title-main">Ocean power in New Zealand</span>

New Zealand has large ocean energy resources but does not yet generate any power from them. TVNZ reported in 2007 that over 20 wave and tidal power projects are currently under development. However, not a lot of public information is available about these projects. The Aotearoa Wave and Tidal Energy Association was established in 2006 to "promote the uptake of marine energy in New Zealand". According to their 10 February 2008 newsletter, they have 59 members. However, the association doesn't list its members.

<span class="mw-page-title-main">Tidal stream generator</span> Type of tidal power generation technology

A tidal stream generator, often referred to as a tidal energy converter (TEC), is a machine that extracts energy from moving masses of water, in particular tides, although the term is often used in reference to machines designed to extract energy from run of river or tidal estuarine sites. Certain types of these machines function very much like underwater wind turbines, and are thus often referred to as tidal turbines. They were first conceived in the 1970s during the oil crisis.

<span class="mw-page-title-main">Tidal barrage</span> Dam-like structure

A tidal barrage is a dam-like structure used to capture the energy from masses of water moving in and out of a bay or river due to tidal forces.

<span class="mw-page-title-main">Renewable energy in Russia</span> Russias renewable energy sources

Renewable energy in Russia mainly consists of hydroelectric energy. In 2010, the country was the sixth largest producer of renewable energy in the world, although it was 56th when hydroelectric energy was not taken into account. Some 179 TWh of Russia's energy production came from renewable energy sources, out of a total economically feasible potential of 1823 TWh. 16% of Russia's electricity was generated from hydropower, and less than 1% was generated from all other renewable energy sources combined. Roughly 68% of Russia's electricity was generated from thermal power and 16% from nuclear power.

<span class="mw-page-title-main">Renewable energy in Bangladesh</span>

Renewable energy in Bangladesh refers to the use of renewable energy to generate electricity in Bangladesh. The current renewable energy comes from biogas that is originated from biomass, hydro power, solar and wind.

Yam Bay is a small bay in the northeastern Sea of Okhotsk. It is located at the southwestern end of the Shelikhov Gulf. To its southeast lie the Yam Islands. River Yama has its mouth in the bay in the Perevolochny estuary by Yamsk.

Tides in marginal seas are tides affected by their location in semi-enclosed areas along the margins of continents and differ from tides in the open oceans. Tides are water level variations caused by the gravitational interaction between the moon, the sun and the earth. The resulting tidal force is a secondary effect of gravity: it is the difference between the actual gravitational force and the centrifugal force. While the centrifugal force is constant across the earth, the gravitational force is dependent on the distance between the two bodies and is therefore not constant across the earth. The tidal force is thus the difference between these two forces on each location on the earth.

References

  1. Usachev, I. N.; Shpolyanskiy, Y. B.; Istorik, B. L.; Kuznetsev, V. P.; Fateev, V. N.; Knyazev, V. A. (2008). Приливные электростанции (ПЭС) — источник энергии, запасаемый в водороде [Tidal power plants (TPP) — a source of energy, store-able in hydrogen](PDF). 2nd International Forum "Hydrogen technologies for developing world" (in Russian). Moscow. Archived from the original (PDF) on 2011-08-17. Retrieved 2010-12-24.
  2. 1 2 Ageev, V. A. "13. Использование энергии приливов и морских течений" (PDF). Нетрадиционные и возобновляемые источники энергии[Using the energy of tides and sea currents] (in Russian). Retrieved 2010-12-24.
  3. Savchenkov, S. N. (2010-04-15). Опыт проектирования приливных электростанций на Северо-Западе России [Experience in design of tidal power in North-West Russia](PDF). International Congress "Clean Energy Days in Saint Petersburg" (in Russian). Archived from the original (PDF) on 2011-09-10. Retrieved 2010-12-24.
  4. Энциклопедия «География» [Encyclopedia of Geography] (in Russian). Retrieved 2010-12-24.[ permanent dead link ]