Perfluorotributylamine

Last updated
Perfluorotributylamine
Perfluorobutylamine Structure V.1.svg
Perfluorotributylamine 3D BS.png
Names
Preferred IUPAC name
1,1,2,2,3,3,4,4,4-Nonafluoro-N,N-bis(nonafluorobutyl)butan-1-amine
Other names
Fluorinert
Identifiers
3D model (JSmol)
AbbreviationsPFTBA
ChEBI
ChemSpider
ECHA InfoCard 100.005.659 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C12F27N/c13-1(14,7(25,26)27)4(19,20)10(34,35)40(11(36,37)5(21,22)2(15,16)8(28,29)30)12(38,39)6(23,24)3(17,18)9(31,32)33
    Key: RVZRBWKZFJCCIB-UHFFFAOYSA-N
  • InChI=1/C12F27N/c13-1(14,7(25,26)27)4(19,20)10(34,35)40(11(36,37)5(21,22)2(15,16)8(28,29)30)12(38,39)6(23,24)3(17,18)9(31,32)33
    Key: RVZRBWKZFJCCIB-UHFFFAOYAW
  • C(C(C(F)(F)F)(F)F)(C(N(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F
Properties
N(CF2CF2CF2CF3)3
Molar mass 671.096 g·mol−1
Appearancecolorless liquid
Density 1.884 g/mL
Melting point −50 °C (−58 °F; 223 K)
Boiling point 178 °C (352 °F; 451 K)
Insoluble
Solubility in methanol and isopropyl alcohol Insoluble
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Perfluorotributylamine (PFTBA), also referred to as FC43, is an organic compound with the chemical formula N(CF2CF2CF2CF3)3. It is a colorless liquid. A molecule of this chemical compound consists of three butyl groups connected to one nitrogen atom, in which all of the hydrogen atoms are replaced with fluorine atoms. The compound is produced for the electronics industry, along with other perfluoroalkylamines. The high degree of fluorination significantly reduces the basicity of the central amine due to electron-withdrawing effects. [1]

Contents

Preparation

It is prepared by electrofluorination of tributylamine using hydrogen fluoride as solvent and source of fluorine: [2]

N(CH2CH2CH2CH3)3 + 27 HF → N(CF2CF2CF2CF3)3 + 27 H2

Uses

The compound has two commercial uses. It is used as an ingredient in Fluosol, artificial blood. This application exploits the high solubility of oxygen and carbon dioxide in the solvent, as well as the low viscosity and toxicity. [3] It is also a component of Fluorinert coolant liquids. CPUs of some computers are immersed in this liquid to facilitate cooling. [2]

Niche

The compound is used as a calibrant [4] in gas chromatography when the analytical technique uses mass spectrometry as a detector to identify and quantify chemical compounds in gases or liquids. When undergoing ionization in the mass spectrometer, the compound decomposes in a repeatable pattern to form fragments of specific masses, which can be used to tune the mass response and accuracy of the mass spectrometer. Most commonly used ions are those with approximate mass of 69, 131, 219, 414 and 502 atomic mass units.

Safety

Fluorofluids are generally of very low toxicity, so much that they have been evaluated as synthetic blood. [2]

Environmental impact

It is a greenhouse gas with warming properties more than 7,000 times that of carbon dioxide over a 100-year period, [5] [6] and, as such, is one of the most potent greenhouse gasses ever discovered. [7] Its concentration in the atmosphere is approximately 0.18 parts per trillion. The compound can persist in the atmosphere for up to 500 years. Sulfur hexafluoride, however, has a GWP of 23,900, [8] which would make it much more powerful.

See also

Related Research Articles

<span class="mw-page-title-main">Hydrocarbon</span> Organic compound consisting entirely of hydrogen and carbon

In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic; their odor is usually faint, and may be similar to that of gasoline or lighter fluid. They occur in a diverse range of molecular structures and phases: they can be gases, liquids, low melting solids or polymers.

<span class="mw-page-title-main">Nitrogen</span> Chemical element, symbol N and atomic number 7

Nitrogen is a chemical element; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System. At standard temperature and pressure, two atoms of the element bond to form N2, a colorless and odorless diatomic gas. N2 forms about 78% of Earth's atmosphere, making it the most abundant uncombined element in air. Because of the volatility of nitrogen compounds, nitrogen is relatively rare in the solid parts of the Earth.

<span class="mw-page-title-main">Solution (chemistry)</span> Homogeneous mixture of a solute and a solvent

In chemistry, a solution is a special type of homogeneous mixture composed of two or more substances. In such a mixture, a solute is a substance dissolved in another substance, known as a solvent. If the attractive forces between the solvent and solute particles are greater than the attractive forces holding the solute particles together, the solvent particles pull the solute particles apart and surround them. These surrounded solute particles then move away from the solid solute and out into the solution. The mixing process of a solution happens at a scale where the effects of chemical polarity are involved, resulting in interactions that are specific to solvation. The solution usually has the state of the solvent when the solvent is the larger fraction of the mixture, as is commonly the case. One important parameter of a solution is the concentration, which is a measure of the amount of solute in a given amount of solution or solvent. The term "aqueous solution" is used when one of the solvents is water.

<span class="mw-page-title-main">Fluorocarbon</span> Class of chemical compounds

Fluorocarbons are chemical compounds with carbon-fluorine bonds. Compounds that contain many C-F bonds often have distinctive properties, e.g., enhanced stability, volatility, and hydrophobicity. Several fluorocarbons and their derivatives are commercial polymers, refrigerants, drugs, and anesthetics.

A period 2 element is one of the chemical elements in the second row of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behavior of the elements as their atomic number increases; a new row is started when chemical behavior begins to repeat, creating columns of elements with similar properties.

A supercritical fluid (SCF) is any substance at a temperature and pressure above its critical point, where distinct liquid and gas phases do not exist, but below the pressure required to compress it into a solid. It can effuse through porous solids like a gas, overcoming the mass transfer limitations that slow liquid transport through such materials. SCF are superior to gases in their ability to dissolve materials like liquids or solids. Also, near the critical point, small changes in pressure or temperature result in large changes in density, allowing many properties of a supercritical fluid to be "fine-tuned".

<span class="mw-page-title-main">Halomethane</span> Halogen compounds derived from methane

Halomethane compounds are derivatives of methane with one or more of the hydrogen atoms replaced with halogen atoms. Halomethanes are both naturally occurring, especially in marine environments, and human-made, most notably as refrigerants, solvents, propellants, and fumigants. Many, including the chlorofluorocarbons, have attracted wide attention because they become active when exposed to ultraviolet light found at high altitudes and destroy the Earth's protective ozone layer.

<span class="mw-page-title-main">Hydrofluorocarbon</span> Synthetic organic compounds

Hydrofluorocarbons (HFCs) are man-made organic compounds that contain fluorine and hydrogen atoms, and are the most common type of organofluorine compounds. Most are gases at room temperature and pressure. They are frequently used in air conditioning and as refrigerants; R-134a (1,1,1,2-tetrafluoroethane) is one of the most commonly used HFC refrigerants. In order to aid the recovery of the stratospheric ozone layer, HFCs were adopted to replace the more potent chlorofluorocarbons (CFCs), which were phased out from use by the Montreal Protocol, and hydrochlorofluorocarbons (HCFCs) which are presently being phased out. HFCs replaced older chlorofluorocarbons such as R-12 and hydrochlorofluorocarbons such as R-21. HFCs are also used in insulating foams, aerosol propellants, as solvents and for fire protection.

<span class="mw-page-title-main">Fluoromethane</span> Chemical compound

Fluoromethane, also known as methyl fluoride, Freon 41, Halocarbon-41 and HFC-41, is a non-toxic, liquefiable, and flammable gas at standard temperature and pressure. It is made of carbon, hydrogen, and fluorine. The name stems from the fact that it is methane (CH4) with a fluorine atom substituted for one of the hydrogen atoms. It is used in semiconductor manufacturing processes as an etching gas in plasma etch reactors.

<span class="mw-page-title-main">Oxygen difluoride</span> Chemical compound

Oxygen difluoride is a chemical compound with the formula OF2. As predicted by VSEPR theory, the molecule adopts a bent molecular geometry. It is a strong oxidizer and has attracted attention in rocketry for this reason. With a boiling point of −144.75 °C, OF2 is the most volatile (isolable) triatomic compound. The compound is one of many known oxygen fluorides.

<span class="mw-page-title-main">Carbon tetrafluoride</span> Chemical compound

Tetrafluoromethane, also known as carbon tetrafluoride or R-14, is the simplest perfluorocarbon (CF4). As its IUPAC name indicates, tetrafluoromethane is the perfluorinated counterpart to the hydrocarbon methane. It can also be classified as a haloalkane or halomethane. Tetrafluoromethane is a useful refrigerant but also a potent greenhouse gas. It has a very high bond strength due to the nature of the carbon–fluorine bond.

<span class="mw-page-title-main">Industrial gas</span> Gaseous materials produced for use in industry

Industrial gases are the gaseous materials that are manufactured for use in industry. The principal gases provided are nitrogen, oxygen, carbon dioxide, argon, hydrogen, helium and acetylene, although many other gases and mixtures are also available in gas cylinders. The industry producing these gases is also known as industrial gas, which is seen as also encompassing the supply of equipment and technology to produce and use the gases. Their production is a part of the wider chemical Industry.

<span class="mw-page-title-main">Trifluoroacetic acid</span> Chemical compound

Trifluoroacetic acid (TFA) is an organofluorine compound with the chemical formula CF3CO2H. It is a structural analogue of acetic acid with all three of the acetyl group's hydrogen atoms replaced by fluorine atoms and is a colorless liquid with a vinegar-like odor.

Combustion analysis is a method used in both organic chemistry and analytical chemistry to determine the elemental composition of a pure organic compound by combusting the sample under conditions where the resulting combustion products can be quantitatively analyzed. Once the number of moles of each combustion product has been determined the empirical formula or a partial empirical formula of the original compound can be calculated.

Sulfolane (also tetramethylene sulfone, systematic name: 6-thiolane-1,1-dione) is an organosulfur compound, formally a cyclic sulfone, with the formula (CH2)4SO2. It is a colorless liquid commonly used in the chemical industry as a solvent for extractive distillation and chemical reactions. Sulfolane was originally developed by the Shell Oil Company in the 1960s as a solvent to purify butadiene. Sulfolane is a polar aprotic solvent, and it is miscible with water.

<span class="mw-page-title-main">Terraforming of Mars</span> Hypothetical modification of Mars into a habitable planet

The terraforming of Mars or the terraformation of Mars is a hypothetical procedure that would consist of a planetary engineering project or concurrent projects aspiring to transform Mars from a planet hostile to terrestrial life to one that could sustainably host humans and other lifeforms free of protection or mediation. The process would involve the modification of the planet's extant climate, atmosphere, and surface through a variety of resource-intensive initiatives, as well as the installation of a novel ecological system or systems.

Organofluorine chemistry describes the chemistry of organofluorine compounds, organic compounds that contain a carbon–fluorine bond. Organofluorine compounds find diverse applications ranging from oil and water repellents to pharmaceuticals, refrigerants, and reagents in catalysis. In addition to these applications, some organofluorine compounds are pollutants because of their contributions to ozone depletion, global warming, bioaccumulation, and toxicity. The area of organofluorine chemistry often requires special techniques associated with the handling of fluorinating agents.

<span class="mw-page-title-main">Perfluorotripentylamine</span> Chemical compound

Perfluorotripentylamine is an organic compound with the chemical formula N( 4CF3)3. A molecule of this chemical compound consists of three pentyl groups connected to one nitrogen atom, in which all of the hydrogen atoms are replaced with fluorine atoms. It is a perfluorocarbon. It is used as an electronics coolant, and has a high boiling point. It is colorless, odorless, and insoluble in water. Unlike ordinary amines, perfluoroamines are of low basicity. Perfluorinated amines are components of fluorofluids, used as immersive coolants for supercomputers.

<span class="mw-page-title-main">Perfluoromethyldiethylamine</span> Chemical compound

Perfluoromethyldiethylamine is a tertiary perfluorinated amine with the chemical formula C5F13N. The compound consists of two pentafluoroethyl and one trifluoromethyl groups connected to nitrogen. The compound is produced for the electronics industry, along with other perfluoroalkylamines. Unlike ordinary amines, perfluoroamines are nonbasic.

1,2-Difluoroethane is a saturated hydrofluorocarbon containing an atom of fluorine attached to each of two carbons atoms. The formula can be written CH2FCH2F. It is an isomer of 1,1-difluoroethane. It has a HFC name of HFC-152 with no letter suffix. When cooled to cryogenic temperatures it can have different conformers, gauche and trans. In the liquid form these are about equally abundant and easily interconvert. As a gas it is mostly the gauche form.

References

  1. "Tuning basicity | Cambridge MedChem Consulting". www.cambridgemedchemconsulting.com. Retrieved 2020-08-11.
  2. 1 2 3 Michael G. Costello; Richard M. Flynn; John G. Owens (2001). "Fluoroethers and Fluoroamines". Kirk-Othmer Encyclopedia of Chemical Technology. Weinstein: Wiley-VCH. doi:10.1002/0471238961.0612211506122514.a01.pub2. ISBN   978-0-471-23896-6.
  3. Garrelts, J. C. (1990). "Fluosol: An oxygen-delivery fluid for use in percutaneous transluminal coronary angioplasty". DICP: The Annals of Pharmacotherapy. 24 (11): 1105–1112. doi:10.1177/106002809002401116. PMID   2275237. S2CID   38969204.
  4. Dunnivant, Frank and Ginsbach, Jake. "Gas Chromatography, Liquid Chromatography, Capillary Electrophoresis – Mass Spectroscopy – A Basic Introduction", Chapter 7, ISBN   978-0-9882761-0-9, ., Nov. 2012.
  5. Hong, A. C.; Young, C. J.; Hurley, M. D.; Wallington, T. J.; Mabury, S. A. (2013). "Perfluorotributylamine: A novel long-lived greenhouse gas". Geophysical Research Letters. 40 (22): 6010–6015. Bibcode:2013GeoRL..40.6010H. doi:10.1002/2013GL058010. S2CID   130690897.
  6. Goldenberg, Suzanne (10 December 2013). "Newly discovered greenhouse gas '7,000 times more powerful than CO2'". The Guardian . Retrieved 11 December 2013.
  7. Goldenberg, Suzanne (11 December 2013). "Newly Discovered Greenhouse Gas "7,000 Times More Powerful than CO2"". Mother Jones . Retrieved 12 December 2013.
  8. "2.10.2 Direct Global Warming Potentials". Intergovernmental Panel on Climate Change. 2007. Retrieved 22 February 2013.