Peter Bruce

Last updated

Sir
Peter Bruce
BRU00018-Peter-Bruce.jpg
Born
Peter George Bruce

(1956-10-02) 2 October 1956 (age 67) [1]
Alma mater University of Aberdeen (BSc, PhD)
Known for Lithium–air battery
Awards
  • Arfvedson Schlenk Award
  • Highly Cited Researcher
  • RSC Liversidge Award
Scientific career
Institutions
Thesis Lithium ion conducting solid electrolytes  (1981)
Website www.materials.ox.ac.uk/peoplepages/bruce.html

Sir Peter George Bruce, FRS , FRSE , FRSC is a British chemist, and Wolfson Professor of Materials in the Department of Materials at the University of Oxford. [1] Between 2018 and 2023, he served as Physical Secretary and Vice President of the Royal Society. [2] Bruce is a founder and Chief Scientist of the Faraday Institution. [3]

Contents

Education

Bruce was educated at Aberdeen Grammar School and the University of Aberdeen where he was awarded a Bachelor of Science degree in 1978 and a PhD in 1982. [1] He completed his PhD research on lithium ion conducting solid electrolytes under the supervision of Prof. A.R. West. [4]

Research

Bruce's primary research interests are in the fields of materials chemistry and electrochemistry; with a particular emphasis on energy storage materials for lithium and sodium batteries. He is interested in the fundamental science of ionically conducting solids and intercalation compounds, the synthesis of new materials with new properties or combinations of properties, understanding these properties and exploring their applications in energy storage. Although ionically conducting solids represent the starting point for much of his research, he has extended his interests beyond the confines of this subject alone. His current research interests include cathode materials, solid state batteries and the Li-air battery.

Bruce has published over 390 papers in this area and has been recognized as a highly cited researcher by the Web of Science Group each year since 2015. [5]

Solid state batteries

All solid state batteries have the potential to revolutionize the electric vehicles of the future. Replacing the flammable organic liquid electrolyte currently used in Li ion cells with a solid will enable the use of an alkali metal anode which will increase energy density and improve safety. Bruce's interests are in understanding the fundamental processes that are taking place and those, such as void and dendrite formation, which ultimately lead to failure of the cell. [6] [7] Until 2023 Bruce led the Faraday Institution's SOLBAT project [8] which aims to "break down the barriers which are preventing the progression to market of solid-state batteries." He now leads the project's workpackage on the anode. [9] [10]

Intercalation Compounds

Lithium intercalation into solid hosts is the fundamental mechanism underpinning the operation of electrodes in rechargeable lithium batteries. He seeks to synthesise new lithium intercalation compounds with unusual properties or combinations of properties. He is especially interested in cathode materials for Li and Na ion batteries. Recently his work in this area has been concerned with compounds which can store additional charge, beyond the transition metal redox capacity, by participation of oxygen in reversible anionic redox processes, including the formation of molecular oxygen in the solid. [11] [12] [13] [14] Bruce leads WP1 of the Faraday Institution's CATMAT project. [15]

Lithium-air battery

Peter G. Bruce is one of the initiators of the Lithium-air battery. The rechargeable lithium-ion battery has revolutionised portable electronics, it will be key to electrifying transport and to delivering secure and stable renewable electricity. However the highest energy density possible for Li-ion batteries is insufficient to meet future demands. The Li-air battery has the potential to transform energy storage and has the highest theoretical energy density of any known battery technology. His research focuses on understanding the fundamental processes underpinning its operation. Recent work has included investigating the kinetics of redox mediators and their use in Li-air cells. [16]

Awards and honours

Bruce has received a number of awards and honours in the UK and overseas. Bruce is an elected Fellow of the Royal Society of Chemistry, Fellow of the Royal Society, a Fellow of the Royal Society of Edinburgh and a member of the Leopoldina (German National Academy of Sciences). He was knighted in the 2022 Birthday Honours for services to science and innovation. [17]

His awards and honours:

Related Research Articles

<span class="mw-page-title-main">Electrode</span> Electrical conductor used to make contact with nonmetallic parts of a circuit

An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit. Electrodes are essential parts of batteries that can consist of a variety of materials depending on the type of battery.

<span class="mw-page-title-main">Electrolysis</span> Technique in chemistry and manufacturing

In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity."

<span class="mw-page-title-main">Lithium-ion battery</span> Rechargeable battery type

A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible intercalation of Li+ ions into electronically conducting solids to store energy. In comparison with other commercial rechargeable batteries, Li-ion batteries are characterized by higher specific energy, higher energy density, higher energy efficiency, a longer cycle life, and a longer calendar life. Also noteworthy is a dramatic improvement in lithium-ion battery properties after their market introduction in 1991: within the next 30 years, their volumetric energy density increased threefold while their cost dropped tenfold.

<span class="mw-page-title-main">M. Stanley Whittingham</span> British-American chemist

Michael Stanley Whittingham is a British-American chemist. He is a professor of chemistry and director of both the Institute for Materials Research and the Materials Science and Engineering program at Binghamton University, State University of New York. He also serves as director of the Northeastern Center for Chemical Energy Storage (NECCES) of the U.S. Department of Energy at Binghamton. He was awarded the Nobel Prize in Chemistry in 2019 alongside Akira Yoshino and John B. Goodenough.

<span class="mw-page-title-main">Solid-state battery</span> Battery with solid electrodes and a solid electrolyte

A solid-state battery is an electrical battery that uses a solid electrolyte for ionic conductions between the electrodes, instead of the liquid or gel polymer electrolytes found in conventional batteries. Solid-state batteries theoretically offer much higher energy density than the typical lithium-ion or lithium polymer batteries.

Nanoarchitectures for lithium-ion batteries are attempts to employ nanotechnology to improve the design of lithium-ion batteries. Research in lithium-ion batteries focuses on improving energy density, power density, safety, durability and cost.

The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.

A metal–air electrochemical cell is an electrochemical cell that uses an anode made from pure metal and an external cathode of ambient air, typically with an aqueous or aprotic electrolyte.

A potassium-ion battery or K-ion battery is a type of battery and analogue to lithium-ion batteries, using potassium ions for charge transfer instead of lithium ions. It was invented by the Iranian/American chemist Ali Eftekhari in 2004.

Aluminium-ion batteries are a class of rechargeable battery in which aluminium ions serve as charge carriers. Aluminium can exchange three electrons per ion. This means that insertion of one Al3+ is equivalent to three Li+ ions. Thus, since the ionic radii of Al3+ (0.54 Å) and Li+ (0.76 Å) are similar, significantly higher numbers of electrons and Al3+ ions can be accepted by cathodes with little damage. Al has 50 times (23.5 megawatt-hours m-3) the energy density of Li and is even higher than coal.

A lithium-ion flow battery is a flow battery that uses a form of lightweight lithium as its charge carrier. The flow battery stores energy separately from its system for discharging. The amount of energy it can store is determined by tank size; its power density is determined by the size of the reaction chamber.

Research in lithium-ion batteries has produced many proposed refinements of lithium-ion batteries. Areas of research interest have focused on improving energy density, safety, rate capability, cycle durability, flexibility, and cost.

<span class="mw-page-title-main">NASICON</span> Class of solid materials

NASICON is an acronym for sodium (Na) super ionic conductor, which usually refers to a family of solids with the chemical formula Na1+xZr2SixP3−xO12, 0 < x < 3. In a broader sense, it is also used for similar compounds where Na, Zr and/or Si are replaced by isovalent elements. NASICON compounds have high ionic conductivities, on the order of 10−3 S/cm, which rival those of liquid electrolytes. They are caused by hopping of Na ions among interstitial sites of the NASICON crystal lattice.

Magnesium batteries are batteries that utilize magnesium cations as charge carriers and possibly in the anode in electrochemical cells. Both non-rechargeable primary cell and rechargeable secondary cell chemistries have been investigated. Magnesium primary cell batteries have been commercialised and have found use as reserve and general use batteries.

The glass battery is a type of solid-state battery. It uses a glass electrolyte and lithium or sodium metal electrodes.

Linda Faye Nazar is a Senior Canada Research Chair in Solid State Materials and Distinguished Research Professor of Chemistry at the University of Waterloo. She develops materials for electrochemical energy storage and conversion. Nazar demonstrated that interwoven composites could be used to improve the energy density of lithium–sulphur batteries. She was awarded the 2019 Chemical Institute of Canada Medal.

<span class="mw-page-title-main">Kristina Edström</span> Swedish inorganic chemist

Kristina Edström is a Swedish Professor of Inorganic Chemistry at Uppsala University. She also serves as Head of the Ångström Advanced Battery Centre (ÅABC) and has previously been both Vice Dean for Research at the Faculty of Science and Technology and Chair of the STandUp for Energy research programme.

Calcium (ion) batteries are energy storage and delivery technologies (i.e., electro–chemical energy storage) that employ calcium ions (cations), Ca2+, as the active charge carrier. Calcium (ion) batteries remain an active area of research, with studies and work persisting in the discovery and development of electrodes and electrolytes that enable stable, long-term battery operation.

<span class="mw-page-title-main">History of the lithium-ion battery</span> Overview of the events of the development of lithium-ion battery

This is a history of the lithium-ion battery.

An anode-free battery (AFB) is one that is manufactured without an anode. Instead, it creates a metal anode the first time it is charged. The anode is formed from charge carriers supplied by the cathode. As such, before charging, the battery consists of a cathode, current collectors, separator and electrolyte.

References

  1. 1 2 3 "BRUCE, Prof. Peter George" . Who's Who . Vol. 2015 (online Oxford University Press  ed.). A & C Black.(Subscription or UK public library membership required.)
  2. "Peter Bruce". Royal Society.
  3. "The Team". The Faraday Institution.
  4. Bruce, Peter G. (1981). Lithium ion conducting solid electrolytes (Ph.D). University of Aberdeen.
  5. "Highly Cited Researchers". publons.com. Retrieved 31 August 2021.
  6. Kasemchainan, Jitti; Zekoll, Stefanie; Spencer Jolly, Dominic; Ning, Ziyang; Hartley, Gareth O.; Marrow, James; Bruce, Peter G. (29 July 2019). "Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells". Nature Materials. 18 (10): 1105–1111. Bibcode:2019NatMa..18.1105K. doi:10.1038/s41563-019-0438-9. PMID   31358941. S2CID   198983965.
  7. Spencer Jolly, Dominic; Ning, Ziyang; Darnbrough, James E.; Kasemchainan, Jitti; Hartley, Gareth O.; Adamson, Paul; Armstrong, David E. J.; Marrow, James; Bruce, Peter G. (9 December 2019). "Sodium/Na β" Alumina Interface: Effect of Pressure on Voids". ACS Applied Materials & Interfaces. 12 (1): 678–685. doi:10.1021/acsami.9b17786. PMID   31815414. S2CID   209165832.
  8. "The Team". SOLBAT.
  9. "About". SOLBAT.
  10. Ning, Ziyang; Jolly, Dominic Spencer; Li, Guanchen; De Meyere, Robin; Pu, Shengda D.; Chen, Yang; Kasemchainan, Jitti; Ihli, Johannes; Gong, Chen; Liu, Boyang; Melvin, Dominic L. R. (August 2021). "Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells". Nature Materials. 20 (8): 1121–1129. Bibcode:2021NatMa..20.1121N. doi:10.1038/s41563-021-00967-8. ISSN   1476-4660. PMID   33888903. S2CID   233355713.
  11. House, Robert A.; Jin, Liyu; Maitra, Urmimala; Tsuruta, Kazuki; Somerville, James W.; Förstermann, Dominic P.; Massel, Felix; Duda, Laurent; Roberts, Matthew R.; Bruce, Peter G. (2018). "Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox". Energy & Environmental Science. 11 (4): 926–932. doi:10.1039/C7EE03195E. S2CID   103612049.
  12. House, Robert A.; Maitra, Urmimala; Pérez-Osorio, Miguel A.; Lozano, Juan G.; Jin, Liyu; Somerville, James W.; Duda, Laurent C.; Nag, Abhishek; Walters, Andrew; Zhou, Ke-Jin; Roberts, Matthew R.; Bruce, Peter G. (9 December 2019). "Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes". Nature. 577 (7791): 502–508. Bibcode:2019Natur.577..502H. doi:10.1038/s41586-019-1854-3. PMID   31816625. S2CID   209165537.
  13. House, Robert A.; Rees, Gregory J.; Pérez-Osorio, Miguel A.; Marie, John-Joseph; Boivin, Edouard; Robertson, Alex W.; Nag, Abhishek; Garcia-Fernandez, Mirian; Zhou, Ke-Jin; Bruce, Peter G. (October 2020). "First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk". Nature Energy. 5 (10): 777–785. Bibcode:2020NatEn...5..777H. doi:10.1038/s41560-020-00697-2. ISSN   2058-7546. S2CID   225342793.
  14. House, Robert A.; Marie, John-Joseph; Park, Joohyuk; Rees, Gregory J.; Agrestini, Stefano; Nag, Abhishek; Garcia-Fernandez, Mirian; Zhou, Ke-Jin; Bruce, Peter G. (20 May 2021). "Covalency does not suppress O2 formation in 4d and 5d Li-rich O-redox cathodes". Nature Communications. 12 (1): 2975. Bibcode:2021NatCo..12.2975H. doi:10.1038/s41467-021-23154-4. ISSN   2041-1723. PMC   8137948 . PMID   34016979.
  15. "Research". CATMAT. 29 January 2020. Retrieved 31 August 2021.
  16. Chen, Yuhui; Gao, Xiangwen; Johnson, Lee R.; Bruce, Peter G. (22 February 2018). "Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium–oxygen cell". Nature Communications. 9 (1): 767. Bibcode:2018NatCo...9..767C. doi:10.1038/s41467-018-03204-0. PMC   5823882 . PMID   29472558.
  17. "No. 63714". The London Gazette (Supplement). 1 June 2022. p. B2.
  18. "Highly Cited Researchers". publons.com. Retrieved 21 April 2024.
  19. "Archive". Royal Society of Chemistry. Retrieved 21 April 2024.
  20. "Longstaff Prize - previous winners". Royal Society of Chemistry. Retrieved 21 April 2024.
  21. "Foreign Members---Academic Divisions of the Chinese Academy of Sciences". english.casad.cas.cn. Retrieved 21 April 2024.
  22. Leopoldina members