Pevonedistat

Last updated
Pevonedistat
Pevonedistat.svg
Identifiers
  • [(1S,2S,4R)-4-[4-[ [(1S)-2,3-dihydro-1H-inden-1-yl]amino]pyrrolo[2,3-d]pyrimidin-7-yl]-2-hydroxycyclopentyl]methyl sulfamate
CAS Number
PubChem CID
DrugBank
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C21H25N5O4S
Molar mass 443.52 g·mol−1
3D model (JSmol)
  • C1CC2=CC=CC=C2[C@H]1NC3=C4C=CN(C4=NC=N3)[C@@H]5C[C@H]([C@H](C5)O)COS(=O)(=O)N
  • InChI=1S/C21H25N5O4S/c22-31(28,29)30-11-14-9-15(10-19(14)27)26-8-7-17-20(23-12-24-21(17)26)25-18-6-5-13-3-1-2-4-16(13)18/h1-4,7-8,12,14-15,18-19,27H,5-6,9-11H2,(H2,22,28,29)(H,23,24,25)/t14-,15+,18-,19-/m0/s1
  • Key:MPUQHZXIXSTTDU-QXGSTGNESA-N

Pevonedistat (MLN4924) is a selective NEDD8 inhibitor. [1] It is being investigated as a cancer treatment, e.g. for mantle cell lymphoma (MCL). [1]

Contents

Target of pevonedistat

NEDD8-activating enzyme (NAE) is a heterodimeric molecule consisting of amyloid beta precursor protein-binding protein 1 (APPBP1) and ubiquitin-like modifier activating enzyme 3 (UBA3). [2] As reviewed by Xu et al., in a first step NAE binds ATP and NEDD8 and catalyzes the formation of a NEDD8-AMP intermediate. This intermediate binds the adenylation domain of NAE. NEDD8-AMP reacts with the catalytic cysteine in UBA3 during which NEDD8 is transferred to the catalytic cysteine, resulting in a high energy thioester linkage. NAE then binds ATP and NEDD8 to generate a second NEDD8-AMP, forming a fully loaded NAE carrying two activated NEDD8 molecules (i.e., one as a thioester and the other as an adenylate). [2]

Pevonedistat is an AMP mimetic. Pevonedistat forms a stable covalent adduct with NEDD8 in the NAE catalytic pocket of UBA3 by reacting with thioester-linked NEDD8 bound to the enzyme's catalytic cysteine. Unlike the labile NEDD8-AMP intermediate, the NEDD8-pevonedistat adduct cannot be utilized in subsequent reactions necessary for NAE activity. [2]

Mechanism of action

"Inhibition of NAE prevents activation of cullin-RING ligases (CRLs), which are critical for proteasome-mediated protein degradation." [3] MLN4924 has been shown to disrupt CRL-mediated protein turnover leading to apoptosis in cancer cells by deregulating S-phase DNA synthesis. [4] Essentially, it encourages apoptosis in dividing cells.

In addition to proteasome-mediated protein degradation, activated NEDD8 is needed for at least two pathways of DNA repair: nucleotide excision repair (NER) and non-homologous end joining (NHEJ) (see NEDD8).

One or more DNA repair genes in seven DNA repair pathways are frequently epigenetically silenced in cancers (see e.g. DNA repair pathways). [5] ) This is a likely source of genome instability in cancers. If activation of NEDD8 is inhibited by pevonedistat, cells will then have an additional induced deficiency of NER or NHEJ. Such cells may then die because of deficient DNA repair leading to accumulation of DNA damages. The effect of NEDD8 inhibition may be greater for cancer cells than for normal cells if the cancer cells are already deficient in DNA repair due to prior epigenetic silencing of DNA repair genes active in alternative pathways (see synthetic lethality).

Clinical trials

In a phase 1 trial to determine dosing in patients with AML and myelodysplastic syndromes "modest clinical activity was observed". [6]

Later, in 2016, pevonedistat demonstrated a significant therapeutic effect in three further Phase I clinical cancer trials. These include pevonedistat trials against relapsed/refractory multiple myeloma or lymphoma, [7] metastatic melanoma, [8] and advanced solid tumors. [9]

These were followed by several phase I and II clinical trials in a variety of advanced cancer types. Currently, pevonedistat is being investigated in combination therapies rather than as a single agent. [10] In 2020, Pevonedistat was denominated by the FDA as a Breakthrough Therapy Designation. [11]

Related Research Articles

<span class="mw-page-title-main">ATM serine/threonine kinase</span> Mammalian protein found in Homo sapiens

ATM serine/threonine kinase or Ataxia-telangiectasia mutated, symbol ATM, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, oxidative stress, topoisomerase cleavage complexes, splicing intermediates, R-loops and in some cases by single-strand DNA breaks. It phosphorylates several key proteins that initiate activation of the DNA damage checkpoint, leading to cell cycle arrest, DNA repair or apoptosis. Several of these targets, including p53, CHK2, BRCA1, NBS1 and H2AX are tumor suppressors.

<span class="mw-page-title-main">UBA1</span> Protein-coding gene in the species Homo sapiens

Ubiquitin-like modifier activating enzyme 1 (UBA1) is an enzyme which in humans is encoded by the UBA1 gene. UBA1 participates in ubiquitination and the NEDD8 pathway for protein folding and degradation, among many other biological processes. This protein has been linked to X-linked spinal muscular atrophy type 2, neurodegenerative diseases, and cancers.

Casein kinase 2 (CK2/CSNK2) is a serine/threonine-selective protein kinase that has been implicated in cell cycle control, DNA repair, regulation of the circadian rhythm, and other cellular processes. De-regulation of CK2 has been linked to tumorigenesis as a potential protection mechanism for mutated cells. Proper CK2 function is necessary for survival of cells as no knockout models have been successfully generated.

<span class="mw-page-title-main">Tipifarnib</span> Chemical compound

Tipifarnib is a farnesyltransferase inhibitor. Farnesyltransferase inhibitors block the activity of the farnesyltransferase enzyme by inhibiting prenylation of the CAAX tail motif, which ultimately prevents Ras from binding to the membrane, rendering it inactive.

Neddylation is the process by which the ubiquitin-like protein NEDD8 is conjugated to its target proteins. This process is analogous to ubiquitination, although it relies on its own enzymes. It is an enzymatic cascade catalyzed by first UBA3 and NAE1, which form the NEDD8 activation enzyme (E1), then the NEDD8 conjugating enzyme UBE2M or UBE2F (E2), and finally the NEDD8 ligase E3, which will bind the substrate NEDD8 to the target protein. The target protein will then have its activity, localization and/or stability affected. Proteins targeted by neddylation can be largely divided into two groups: cullins and non-cullins. Cullins, when neddylated, release CAND1 from its inhibitory binding, and that leads to the activation of Cullin Ring Ligases, which in turn perform ubiquitination.

<span class="mw-page-title-main">Ataxia telangiectasia and Rad3 related</span> Protein kinase that detects DNA damage and halts cell division

Serine/threonine-protein kinase ATR, also known as ataxia telangiectasia and Rad3-related protein (ATR) or FRAP-related protein 1 (FRP1), is an enzyme that, in humans, is encoded by the ATR gene. It is a large kinase of about 301.66 kDa. ATR belongs to the phosphatidylinositol 3-kinase-related kinase protein family. ATR is activated in response to single strand breaks, and works with ATM to ensure genome integrity.

<span class="mw-page-title-main">Acute myeloblastic leukemia with maturation</span> Medical condition

Acute myeloblastic leukemia with maturation (M2) is a subtype of acute myeloid leukemia (AML).

<span class="mw-page-title-main">DNA-PKcs</span> Protein-coding gene in the species Homo sapiens

DNA-dependent protein kinase catalytic subunit, also known as DNA-PKcs, is an enzyme that plays a crucial role in repairing DNA double-strand breaks and has a number of other DNA housekeeping functions. In humans it is encoded by the gene designated as PRKDC or XRCC7. DNA-PKcs belongs to the phosphatidylinositol 3-kinase-related kinase protein family. The DNA-Pkcs protein is a serine/threonine protein kinase consisting of a single polypeptide chain of 4,128 amino acids.

<span class="mw-page-title-main">BRAF (gene)</span> Protein-coding gene in humans

BRAF is a human gene that encodes a protein called B-Raf. The gene is also referred to as proto-oncogene B-Raf and v-Raf murine sarcoma viral oncogene homolog B, while the protein is more formally known as serine/threonine-protein kinase B-Raf.

<span class="mw-page-title-main">EZH2</span> Protein-coding gene in the species Homo sapiens

Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase enzyme encoded by EZH2 gene, that participates in histone methylation and, ultimately, transcriptional repression. EZH2 catalyzes the addition of methyl groups to histone H3 at lysine 27, by using the cofactor S-adenosyl-L-methionine. Methylation activity of EZH2 facilitates heterochromatin formation thereby silences gene function. Remodeling of chromosomal heterochromatin by EZH2 is also required during cell mitosis.

<span class="mw-page-title-main">NEDD8</span>

NEDD8 is a protein that in humans is encoded by the NEDD8 gene. This ubiquitin-like (UBL) protein becomes covalently conjugated to a limited number of cellular proteins, in a process called NEDDylation similar to ubiquitination. Human NEDD8 shares 60% amino acid sequence identity to ubiquitin. The primary known substrates of NEDD8 modification are the cullin subunits of cullin-based E3 ubiquitin ligases, which are active only when NEDDylated. Their NEDDylation is critical for the recruitment of E2 to the ligase complex, thus facilitating ubiquitin conjugation. NEDD8 modification has therefore been implicated in cell cycle progression and cytoskeletal regulation.

<span class="mw-page-title-main">DNA ligase 1</span> Protein-coding gene in the species Homo sapiens

DNA ligase 1 also DNA ligase I, is an enzyme that in humans is encoded by the LIG1 gene. DNA ligase 1 is the only known eukaryotic DNA ligase involved in both DNA replication and repair, making it the most studied of the ligases.

<span class="mw-page-title-main">APPBP1</span> Protein-coding gene in the species Homo sapiens

NEDD8-activating enzyme E1 regulatory subunit is a protein that in humans is encoded by the NAE1 gene.

<span class="mw-page-title-main">UBE1C</span> Protein-coding gene in the species Homo sapiens

NEDD8-activating enzyme E1 catalytic subunit is a protein that in humans is encoded by the UBA3 gene.

<span class="mw-page-title-main">UBE2M</span> Protein-coding gene in the species Homo sapiens

NEDD8-conjugating enzyme Ubc12 is a protein that in humans is encoded by the UBE2M gene.

<span class="mw-page-title-main">Panobinostat</span> Chemical compound

Panobinostat, sold under the brand name Farydak, is a medication used for the treatment of multiple myeloma. It is a hydroxamic acid and acts as a non-selective histone deacetylase inhibitor.

<span class="mw-page-title-main">PARP inhibitor</span> Pharmacological enzyme inhibitors of poly (ADP-ribose) polymerases

PARP inhibitors are a call of drugs that are a group of pharmacological inhibitors of the enzyme poly ADP ribose polymerase (PARP), which plays a role in repairing DNA in damaged cells.

<span class="mw-page-title-main">UBA2</span> Protein-coding gene in the species Homo sapiens

Ubiquitin-like 1-activating enzyme E1B (UBLE1B) also known as SUMO-activating enzyme subunit 2 (SAE2) is an enzyme that in humans is encoded by the UBA2 gene.

<span class="mw-page-title-main">Cancer epigenetics</span> Field of study in cancer research

Cancer epigenetics is the study of epigenetic modifications to the DNA of cancer cells that do not involve a change in the nucleotide sequence, but instead involve a change in the way the genetic code is expressed. Epigenetic mechanisms are necessary to maintain normal sequences of tissue specific gene expression and are crucial for normal development. They may be just as important, if not even more important, than genetic mutations in a cell's transformation to cancer. The disturbance of epigenetic processes in cancers, can lead to a loss of expression of genes that occurs about 10 times more frequently by transcription silencing than by mutations. As Vogelstein et al. points out, in a colorectal cancer there are usually about 3 to 6 driver mutations and 33 to 66 hitchhiker or passenger mutations. However, in colon tumors compared to adjacent normal-appearing colonic mucosa, there are about 600 to 800 heavily methylated CpG islands in the promoters of genes in the tumors while these CpG islands are not methylated in the adjacent mucosa. Manipulation of epigenetic alterations holds great promise for cancer prevention, detection, and therapy. In different types of cancer, a variety of epigenetic mechanisms can be perturbed, such as the silencing of tumor suppressor genes and activation of oncogenes by altered CpG island methylation patterns, histone modifications, and dysregulation of DNA binding proteins. There are several medications which have epigenetic impact, that are now used in a number of these diseases.

<span class="mw-page-title-main">Triciribine</span> Chemical compound

Triciribine is a cancer drug which was first synthesized in the 1970s and studied clinically in the 1980s and 1990s without success. Following the discovery in the early 2000s that the drug would be effective against tumours with hyperactivated Akt, it is now again under consideration in a variety of cancers. As PTX-200, the drug is currently in two early stage clinical trials in breast cancer and ovarian cancer being conducted by the small molecule drug development company Prescient Therapeutics.

References

  1. 1 2 Czuczman NM, Barth MJ, Gu J, Neppalli V, Mavis C, Frys SE, et al. (March 2016). "Pevonedistat, a NEDD8-activating enzyme inhibitor, is active in mantle cell lymphoma and enhances rituximab activity in vivo". Blood. 127 (9): 1128–1137. doi:10.1182/blood-2015-04-640920. PMC   4778163 . PMID   26675347.
  2. 1 2 3 Xu GW, Toth JI, da Silva SR, Paiva SL, Lukkarila JL, Hurren R, et al. (2014). "Mutations in UBA3 confer resistance to the NEDD8-activating enzyme inhibitor MLN4924 in human leukemic cells". PLOS ONE. 9 (4): e93530. Bibcode:2014PLoSO...993530X. doi: 10.1371/journal.pone.0093530 . PMC   3972249 . PMID   24691136. CC-BY icon.svg Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
  3. Wolenski FS, Fisher CD, Sano T, Wyllie SD, Cicia LA, Gallacher MJ, et al. (2015). "The NAE inhibitor pevonedistat (MLN4924) synergizes with TNF-α to activate apoptosis". Cell Death Discovery. 1: 15034. doi:10.1038/cddiscovery.2015.34. PMC   4979425 . PMID   27551465.
  4. Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, et al. (April 2009). "An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer". Nature. 458 (7239): 732–736. Bibcode:2009Natur.458..732S. doi:10.1038/nature07884. PMID   19360080. S2CID   41289859.
  5. Jin B, Robertson KD (2013). "DNA Methyltransferases, DNA Damage Repair, and Cancer". Epigenetic Alterations in Oncogenesis. Advances in Experimental Medicine and Biology. Vol. 754. pp. 3–29. doi:10.1007/978-1-4419-9967-2_1. ISBN   978-1-4419-9966-5. PMC   3707278 . PMID   22956494.
  6. Swords RT, Erba HP, DeAngelo DJ, Bixby DL, Altman JK, Maris M, et al. (May 2015). "Pevonedistat (MLN4924), a First-in-Class NEDD8-activating enzyme inhibitor, in patients with acute myeloid leukaemia and myelodysplastic syndromes: a phase 1 study". British Journal of Haematology. 169 (4): 534–543. doi: 10.1111/bjh.13323 . hdl: 2027.42/111220 . PMID   25733005.
  7. Shah JJ, Jakubowiak AJ, O'Connor OA, Orlowski RZ, Harvey RD, Smith MR, et al. (January 2016). "Phase I Study of the Novel Investigational NEDD8-Activating Enzyme Inhibitor Pevonedistat (MLN4924) in Patients with Relapsed/Refractory Multiple Myeloma or Lymphoma". Clinical Cancer Research. 22 (1): 34–43. doi:10.1158/1078-0432.CCR-15-1237. PMC   5694347 . PMID   26561559.
  8. Bhatia S, Pavlick AC, Boasberg P, Thompson JA, Mulligan G, Pickard MD, et al. (August 2016). "A phase I study of the investigational NEDD8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924) in patients with metastatic melanoma". Investigational New Drugs. 34 (4): 439–449. doi:10.1007/s10637-016-0348-5. PMC   4919369 . PMID   27056178.
  9. Sarantopoulos J, Shapiro GI, Cohen RB, Clark JW, Kauh JS, Weiss GJ, et al. (February 2016). "Phase I Study of the Investigational NEDD8-Activating Enzyme Inhibitor Pevonedistat (TAK-924/MLN4924) in Patients with Advanced Solid Tumors". Clinical Cancer Research. 22 (4): 847–857. doi: 10.1158/1078-0432.CCR-15-1338 . PMID   26423795.
  10. "ClinicalTrials.gov". clinicaltrials.gov. Retrieved 29 September 2024.
  11. "Takeda Announces U.S. FDA Breakthrough Therapy Designation Granted for Pevonedistat for the Treatment of Patients with Higher-Risk Myelodysplastic Syndromes (HR-MDS)". www.takeda.com. Retrieved 29 September 2024.

Further reading