Phagolysosome

Last updated

In biology, a phagolysosome, or endolysosome, is a cytoplasmic body formed by the fusion of a phagosome with a lysosome in a process that occurs during phagocytosis. Formation of phagolysosomes is essential for the intracellular destruction of microorganisms and pathogens. It takes place when the phagosome's and lysosome's membranes 'collide', at which point the lysosomal contents—including hydrolytic enzymes—are discharged into the phagosome in an explosive manner and digest the particles that the phagosome had ingested. Some products of the digestion are useful materials and are moved into the cytoplasm; others are exported by exocytosis.

Contents

The process of phagocytosis showing phagolysosome formation. Lysosome(shown in green) fuses with phagosome to form a phagolysosome. Phagocytosis.svg
The process of phagocytosis showing phagolysosome formation. Lysosome(shown in green) fuses with phagosome to form a phagolysosome.

Membrane fusion of the phagosome and lysosome is regulated by the Rab5 protein, [1] a G protein that allows the exchange of material between these two organelles but prevents complete fusion of their membranes. [1]

When the phagosome and lysosome interact with one another, they form a fully developed phagolysosome. A fully developed phagolysosome consists of digestive and aseptic properties. The purpose of phagolysosomes is to act as a protective barrier. It is a defense line that kills pathogenic bacteria that may have slipped through detection of the other immune system cells. The extracellular space that surrounds the lysosome is very acidic which is important for degradation because most cells cannot handle an acidic environment and will die, with an exception of a few. [2]

Function

Phagolysosomes function by reducing the pH of their internal environment. The phagolysosome becomes increasingly acidic through the action of V-ATPase proton pumps, reaching a pH as low as 4.5-5.0. [3] This acidic environment is essential for the activation of hydrolytic enzymes and the denaturation of microbial proteins. [4] This serves as a defense mechanism against microbes and other harmful parasites and also provides a suitable medium for degradative enzyme activity. [5]

Microbes are destroyed within phagolysosomes by a combination of oxidative and non-oxidative processes. The oxidative process, also known as respiratory burst includes the "non-mitochondrial" production of reactive oxygen species. [6]

By lowering pH and concentrations of sources of carbon and nitrogen, phagolysomes inhibit growth of fungi. An example is the inhibition of hyphae in Candida albicans . [7]

In human neutrophils, the phagolysosomes destroy pathogens also by producing hypochlorous acid. [8]

Stages of Phagocytosis and Phagolysosome Formation

Phagocytosis and phagolysosome formation can be broken down into several discrete stages, each involving specific cellular processes and molecular players:

  1. Signal Recognition: The process begins with the exposure of a signal on the target particle or cell. This signal, often referred to as an "eat-me" signal, is recognized by receptors on the surface of the phagocyte. [9] The phagocyte then engulfs the extracellular pathogen or particle, entrapping it within its membrane.
  2. Phagocytic Cup Formation: Upon signal recognition, additional receptors are recruited to the site, and the phagocyte's plasma membrane begins to extend around the target, forming a structure called the phagocytic cup. [9]
  3. Phagosome Formation: Once the phagocytic cup has almost completely surrounded the target, the membrane extensions seal together, forming an intact phagosome containing the engulfed material. [9]
  4. Phagosome Maturation: The newly formed phagosome undergoes a series of transitions similar to endosome maturation. This process involves the recycling of phagocytic receptors and the gradual acidification of the phagosome lumen. [9] During this stage, the phagosome travels further into the cytosol.
  5. Phagolysosome Formation: The maturing phagosome fuses with lysosomes, forming a phagolysosome. This fusion delivers hydrolytic enzymes into the phagosome, initiating the degradation of the engulfed material. [9]
  6. Cargo Degradation: Within the phagolysosome, degradation of the cargo begins, often starting with the breakdown of the cargo's membrane. Lysosomal hydrolases progressively break down the contents into smaller molecules, revealing cell components such as carbohydrates, lipids, and proteins. [9]
  7. Phagolysosome Resolution: In the final stage, the phagolysosome may undergo tubulation, releasing vesicles that can either reform lysosomes or facilitate further degradation of cargo. This process is crucial for recycling phagolysosomal components and completing the degradation of engulfed materials. [9]

The fate of the digested material can vary. It may be killed through apoptosis, further engulfed by macrophages, or presented to T-cells to induce an immune reaction. [4]

Interestingly, some proteins are involved in multiple stages of this process, indicating mechanistic overlap between these seemingly discrete steps. [9] The entire process is regulated by conserved proteins involved in recognizing, engulfing, and processing extracellular debris.

Research using model organisms, particularly Caenorhabditis elegans, has been instrumental in identifying the molecular players involved in these stages and ordering them into distinct pathways. [10] C. elegans offers several advantages for studying phagocytosis, including the ability to observe the process in live animals with endogenous cargos in situ. [11] The predictable timing of cell deaths and engulfment in C. elegans allows for time-lapse imaging of each step at the single-cell level. [12]

Phagolysosome Resolution

Phagolysosome resolution is the final stage in the phagocytic process, involving the breakdown of engulfed material and the recycling of phagolysosomal components. Most studies do not image the process of phagocytosis to completion, instead using lysosome fusion or acidification of the phagolysosome lumen as endpoints. [9] Additionally, this resolution stage is less well understood compared to earlier phases of phagocytosis, as it can take a significant amount of time. While engulfment and phagosome maturation can occur in minutes, degradation of phagolysosomal cargo can take hours to complete. [13]

Process of Resolution

Amino acid transport and phagolysosome resolution in three stages: (A) Inside the phagolysosome, hydrolases break down proteins into amino acids, represented by pink and blue dots. Amino acid transporters, such as LAAT-1 (shown in pink) and SLC-36.1 (shown in blue), export these different amino acids from the phagolysosome lumen into the cytosol. (B) The exported amino acids activate mTOR (depicted in green). This activation leads to ARL-8-mediated tubulation. ARL-8 (shown in red) likely interacts with motor proteins and microtubules (represented in orange) to facilitate this process.(C) The tubulation process results in the formation of phagolysosomal vesicles. This cycle repeats until the phagolysosome is fully resolved. Amino Acid Transport & Phagolysosome Resolution.jpg
Amino acid transport and phagolysosome resolution in three stages: (A) Inside the phagolysosome, hydrolases break down proteins into amino acids, represented by pink and blue dots. Amino acid transporters, such as LAAT-1 (shown in pink) and SLC-36.1 (shown in blue), export these different amino acids from the phagolysosome lumen into the cytosol. (B) The exported amino acids activate mTOR (depicted in green). This activation leads to ARL-8-mediated tubulation. ARL-8 (shown in red) likely interacts with motor proteins and microtubules (represented in orange) to facilitate this process.(C) The tubulation process results in the formation of phagolysosomal vesicles. This cycle repeats until the phagolysosome is fully resolved.

After phagosome-lysosome fusion, the process of resolution can occur. Degradation begins with the breakdown of the cargo membrane to expose the cargo contents to lysosomal hydrolases. Lysosomal lipases are thought to target the cargo membrane while leaving the phagolysosomal membrane intact, possibly due to protection by glycosylated lysosomal membrane proteins. [14] However, the exact mechanism by which lipases distinguish between these membranes remains unclear.

Once the cargo membrane is compromised, lysosomal proteases and nucleases, such as the cathepsin protease CPL-1 and the DNase II homolog NUC-1, degrade the phagolysosomal cargo proteins and nucleic acids. [15] The resulting breakdown products, including amino acids, are then transported out of the phagolysosome by various transporters, including members of the solute carrier family like SLC-36.1 and the SLC66A1 ortholog LAAT-1. [16]

The transport of breakdown products out of the phagolysosome serves multiple cellular functions. In immune cells, this process is crucial for antigen presentation, enabling the cell to communicate information about the degraded material to other components of the immune system. [17] Additionally, the breakdown of phagolysosomal contents may contribute to cellular metabolism. The resulting molecules can serve as raw materials and energy sources for various cellular processes, potentially including the facilitation of subsequent rounds of phagocytosis. [9] This efficient recycling of engulfed material highlights the phagolysosome's role not only in cellular defense but also in nutrient acquisition and energy management.

Membrane Dynamics

Recent time-lapse studies have revealed dynamic changes in phagolysosomal membranes during resolution. Within an hour of cargo membrane breakdown, the phagolysosome begins to tubulate and release vesicles. [13] This process depends on the small GTPase ARL-8, which is associated with kinesin microtubule motor proteins. The released phagolysosomal vesicles play dual roles: they promote further degradation of cargo molecules [13] and contribute to the reformation of lysosomes by retrieving lysosomal hydrolases and membrane proteins. [16]

Signaling and Regulation

The export of degraded phagolysosomal contents, particularly amino acids, plays a crucial role in regulating phagolysosome resolution. Amino acid transport by proteins such as SLC-36.1 and subsequent amino acid sensing lead to mTOR signaling, which is necessary for phagolysosome tubulation and vesicle release. [16] However, the exact mechanism linking mTOR signaling to ARL-8-mediated tubulation is not yet fully understood. [9]

Importance for Cell Function

Phagolysosome resolution serves several important cellular functions:

  1. Antigen presentation: In immune cells, the transport of breakdown products out of the phagolysosome is crucial for antigen presentation.
  2. Metabolic support: The breakdown of phagolysosomal contents may provide raw materials and energy for cellular functions, including further rounds of phagocytosis.
  3. Lysosome reformation: The vesicles released during phagolysosome resolution contribute to the reformation of lysosomes, thus supporting the next round of phagocytosis.
  4. Cargo degradation: The tubulation and vesicle release processes promote the complete degradation of phagolysosomal cargo.

Despite recent advances, many aspects of phagolysosome resolution remain to be elucidated, including the specificity of lipases in membrane breakdown, potential cytosolic repair mechanisms for the phagolysosomal membrane, and the precise regulation of ARL-8 in promoting tubulation versus whole organelle movement.

Pathogens

Coxiella burnetii , the causative agent of Q fever, thrives and replicates in the acidic phagolysosomes of its host cell. [18] The acidity of the phagolysosome is essential for C.burnetii to transport glucose, glutamate, and proline, as well as for its synthesis of nucleic acids and proteins. [19]

Similarly, when in its amastigote stage, Leishmania obtains all its purine sources, various vitamins, and a number of its essential amino acids from the phagolysosome of its host. Leishmania also obtain heme from the proteolysis of proteins in the host phagolysosome. [16]

Related Research Articles

<span class="mw-page-title-main">Endocytosis</span> Cellular process

Endocytosis is a cellular process in which substances are brought into the cell. The material to be internalized is surrounded by an area of cell membrane, which then buds off inside the cell to form a vesicle containing the ingested materials. Endocytosis includes pinocytosis and phagocytosis. It is a form of active transport.

<span class="mw-page-title-main">Lysosome</span> Cell membrane organelle

A lysosome is a single membrane-bound organelle found in many animal cells. They are spherical vesicles that contain hydrolytic enzymes that digest many kinds of biomolecules. A lysosome has a specific composition, of both its membrane proteins and its lumenal proteins. The lumen's pH (~4.5–5.0) is optimal for the enzymes involved in hydrolysis, analogous to the activity of the stomach. Besides degradation of polymers, the lysosome is involved in cell processes of secretion, plasma membrane repair, apoptosis, cell signaling, and energy metabolism.

<span class="mw-page-title-main">Vacuole</span> Membrane-bound organelle in cells containing fluid

A vacuole is a membrane-bound organelle which is present in plant and fungal cells and some protist, animal, and bacterial cells. Vacuoles are essentially enclosed compartments which are filled with water containing inorganic and organic molecules including enzymes in solution, though in certain cases they may contain solids which have been engulfed. Vacuoles are formed by the fusion of multiple membrane vesicles and are effectively just larger forms of these. The organelle has no basic shape or size; its structure varies according to the requirements of the cell.

<span class="mw-page-title-main">Vesicle (biology and chemistry)</span> Any small, fluid-filled, spherical organelle enclosed by a membrane

In cell biology, a vesicle is a structure within or outside a cell, consisting of liquid or cytoplasm enclosed by a lipid bilayer. Vesicles form naturally during the processes of secretion (exocytosis), uptake (endocytosis), and the transport of materials within the plasma membrane. Alternatively, they may be prepared artificially, in which case they are called liposomes. If there is only one phospholipid bilayer, the vesicles are called unilamellar liposomes; otherwise they are called multilamellar liposomes. The membrane enclosing the vesicle is also a lamellar phase, similar to that of the plasma membrane, and intracellular vesicles can fuse with the plasma membrane to release their contents outside the cell. Vesicles can also fuse with other organelles within the cell. A vesicle released from the cell is known as an extracellular vesicle.

<span class="mw-page-title-main">Phagocytosis</span> Cell membrane engulfing a large particle

Phagocytosis is the process by which a cell uses its plasma membrane to engulf a large particle, giving rise to an internal compartment called the phagosome. It is one type of endocytosis. A cell that performs phagocytosis is called a phagocyte.

<span class="mw-page-title-main">Phagocyte</span> Cells that ingest harmful matter within the body

Phagocytes are cells that protect the body by ingesting harmful foreign particles, bacteria, and dead or dying cells. Their name comes from the Greek phagein, "to eat" or "devour", and "-cyte", the suffix in biology denoting "cell", from the Greek kutos, "hollow vessel". They are essential for fighting infections and for subsequent immunity. Phagocytes are important throughout the animal kingdom and are highly developed within vertebrates. One litre of human blood contains about six billion phagocytes. They were discovered in 1882 by Ilya Ilyich Mechnikov while he was studying starfish larvae. Mechnikov was awarded the 1908 Nobel Prize in Physiology or Medicine for his discovery. Phagocytes occur in many species; some amoebae behave like macrophage phagocytes, which suggests that phagocytes appeared early in the evolution of life.

<span class="mw-page-title-main">Endosome</span> Vacuole to which materials ingested by endocytosis are delivered

Endosomes are a collection of intracellular sorting organelles in eukaryotic cells. They are parts of the endocytic membrane transport pathway originating from the trans Golgi network. Molecules or ligands internalized from the plasma membrane can follow this pathway all the way to lysosomes for degradation or can be recycled back to the cell membrane in the endocytic cycle. Molecules are also transported to endosomes from the trans Golgi network and either continue to lysosomes or recycle back to the Golgi apparatus.

<span class="mw-page-title-main">Autophagy</span> Process of cells digesting parts of themselves

Autophagy is the natural, conserved degradation of the cell that removes unnecessary or dysfunctional components through a lysosome-dependent regulated mechanism. It allows the orderly degradation and recycling of cellular components. Although initially characterized as a primordial degradation pathway induced to protect against starvation, it has become increasingly clear that autophagy also plays a major role in the homeostasis of non-starved cells. Defects in autophagy have been linked to various human diseases, including neurodegeneration and cancer, and interest in modulating autophagy as a potential treatment for these diseases has grown rapidly.

<i>Coxiella burnetii</i> Species of bacterium

Coxiella burnetii is an obligate intracellular bacterial pathogen, and is the causative agent of Q fever. The genus Coxiella is morphologically similar to Rickettsia, but with a variety of genetic and physiological differences. C. burnetii is a small Gram-negative, coccobacillary bacterium that is highly resistant to environmental stresses such as high temperature, osmotic pressure, and ultraviolet light. These characteristics are attributed to a small cell variant form of the organism that is part of a biphasic developmental cycle, including a more metabolically and replicatively active large cell variant form. It can survive standard disinfectants, and is resistant to many other environmental changes like those presented in the phagolysosome.

Respiratory burst is the rapid release of the reactive oxygen species (ROS), superoxide anion and hydrogen peroxide, from different cell types.

<span class="mw-page-title-main">Phagosome</span> Vesicle formed around a particle engulfed by a phagocyte via phagocytosis

In cell biology, a phagosome is a vesicle formed around a particle engulfed by a phagocyte via phagocytosis. Professional phagocytes include macrophages, neutrophils, and dendritic cells (DCs).

<span class="mw-page-title-main">Chédiak–Higashi syndrome</span> Medical condition

Chédiak–Higashi syndrome (CHS) is a rare autosomal recessive disorder that arises from a mutation of a lysosomal trafficking regulator protein, which leads to a decrease in phagocytosis. The decrease in phagocytosis results in recurrent pyogenic infections, albinism, and peripheral neuropathy.

<span class="mw-page-title-main">Bafilomycin</span> Chemical compound

The bafilomycins are a family of macrolide antibiotics produced from a variety of Streptomycetes. Their chemical structure is defined by a 16-membered lactone ring scaffold. Bafilomycins exhibit a wide range of biological activity, including anti-tumor, anti-parasitic, immunosuppressant and anti-fungal activity. The most used bafilomycin is bafilomycin A1, a potent inhibitor of cellular autophagy. Bafilomycins have also been found to act as ionophores, transporting potassium K+ across biological membranes and leading to mitochondrial damage and cell death.

<span class="mw-page-title-main">Alveolar macrophage</span>

An alveolar macrophage, pulmonary macrophage, is a type of macrophage, a professional phagocyte, found in the airways and at the level of the alveoli in the lungs, but separated from their walls.

A non-specific immune cell is an immune cell that responds to many antigens, not just one antigen. Non-specific immune cells function in the first line of defense against infection or injury. The innate immune system is always present at the site of infection and ready to fight the bacteria; it can also be referred to as the "natural" immune system. The cells of the innate immune system do not have specific responses and respond to each foreign invader using the same mechanism.

<span class="mw-page-title-main">Cytosis</span> Movement of molecules into or out of cells

-Cytosis is a suffix that either refers to certain aspects of cells ie cellular process or phenomenon or sometimes refers to predominance of certain type of cells. It essentially means "of the cell". Sometimes it may be shortened to -osis and may be related to some of the processes ending with -esis or similar suffixes.

<span class="mw-page-title-main">Intracellular digestion</span>

Every organism requires energy to be active. However, to obtain energy from its outside environment, cells must not only retrieve molecules from their surroundings but also break them down. This process is known as intracellular digestion. In its broadest sense, intracellular digestion is the breakdown of substances within the cytoplasm of a cell. In detail, a phagocyte's duty is obtaining food particles and digesting it in a vacuole. For example, following phagocytosis, the ingested particle fuses with a lysosome containing hydrolytic enzymes to form a phagolysosome; the pathogens or food particles within the phagosome are then digested by the lysosome's enzymes.

Microautophagy is one of the three common forms of autophagic pathway, but unlike macroautophagy and chaperone-mediated autophagy, it is mediated—in mammals by lysosomal action or in plants and fungi by vacuolar action—by direct engulfment of the cytoplasmic cargo. Cytoplasmic material is trapped in the lysosome/vacuole by a random process of membrane invagination.

<span class="mw-page-title-main">Intracellular transport</span> Directed movement of vesicles and substances within a cell

Intracellular transport is the movement of vesicles and substances within a cell. Intracellular transport is required for maintaining homeostasis within the cell by responding to physiological signals. Proteins synthesized in the cytosol are distributed to their respective organelles, according to their specific amino acid’s sorting sequence. Eukaryotic cells transport packets of components to particular intracellular locations by attaching them to molecular motors that haul them along microtubules and actin filaments. Since intracellular transport heavily relies on microtubules for movement, the components of the cytoskeleton play a vital role in trafficking vesicles between organelles and the plasma membrane by providing mechanical support. Through this pathway, it is possible to facilitate the movement of essential molecules such as membrane‐bounded vesicles and organelles, mRNA, and chromosomes.

Vomocytosis is the cellular process by phagocytes expel live organisms that they have engulfed without destroying the organism. Vomocytosis is one of many methods used by cells to expel internal materials into their external environment, yet it is distinct in that both the engulfed organism and host cell remain undamaged by expulsion. As engulfed organisms are released without being destroyed, vomocytosis has been hypothesized to be utilized by pathogens as an escape mechanism from the immune system. The exact mechanisms, as well as the repertoire of cells that utilize this mechanism, are currently unknown, yet interest in this unique cellular process is driving continued research with the hopes of elucidating these unknowns.

References

  1. 1 2 Duclos S, Diez R, Garin J, Papadopoulou B, Descoteaux A, Stenmark H, et al. (October 2000). "Rab5 regulates the kiss and run fusion between phagosomes and endosomes and the acquisition of phagosome leishmanicidal properties in RAW 264.7 macrophages". Journal of Cell Science. 113 (19): 3531–3541. doi:10.1242/jcs.113.19.3531. PMID   10984443.
  2. Lee HJ, Woo Y, Hahn TW, Jung YM, Jung YJ (August 2020). "Formation and Maturation of the Phagosome: A Key Mechanism in Innate Immunity against Intracellular Bacterial Infection". Microorganisms. 8 (9): 1298. doi: 10.3390/microorganisms8091298 . PMC   7564318 . PMID   32854338.
  3. Kissing S, Hermsen C, Repnik U, Nesset CK, von Bargen K, Griffiths G, et al. (May 2015). "Vacuolar ATPase in Phagosome-Lysosome Fusion". Journal of Biological Chemistry. 290 (22): 14166–14180. doi: 10.1074/jbc.M114.628891 . PMC   4447986 . PMID   25903133.
  4. 1 2 Nguyen JA, Yates RM (2021). "Better Together: Current Insights Into Phagosome-Lysosome Fusion". Frontiers in Immunology. 12: 636078. doi: 10.3389/fimmu.2021.636078 . PMC   7946854 . PMID   33717183.
  5. Levitz SM, Nong SH, Seetoo KF, Harrison TS, Speizer RA, Simons ER (February 1999). "Cryptococcus neoformans resides in an acidic phagolysosome of human macrophages". Infection and Immunity. 67 (2): 885–890. doi:10.1128/IAI.67.2.885-890.1999. PMC   96400 . PMID   9916104.
  6. Urban CF, Lourido S, Zychlinsky A (November 2006). "How do microbes evade neutrophil killing?". Cellular Microbiology. 8 (11): 1687–1696. doi:10.1111/j.1462-5822.2006.00792.x. PMID   16939535. S2CID   33708929.
  7. Erwig LP, Gow NA (March 2016). "Interactions of fungal pathogens with phagocytes". Nature Reviews. Microbiology. 14 (3): 163–176. doi:10.1038/nrmicro.2015.21. PMID   26853116. S2CID   19668359.
  8. Painter RG, Wang G (May 2006). "Direct measurement of free chloride concentrations in the phagolysosomes of human neutrophils". Analytical Chemistry. 78 (9): 3133–3137. doi:10.1021/ac0521706. PMID   16643004.
  9. 1 2 3 4 5 6 7 8 9 10 11 Ghose P, Wehman AM (2021-01-01), Jarriault S, Podbilewicz B (eds.), "The developmental and physiological roles of phagocytosis in Caenorhabditis elegans", Current Topics in Developmental Biology, Nematode Models of Development and Disease, vol. 144, Academic Press, pp. 409–432, doi:10.1016/bs.ctdb.2020.09.001, ISBN   978-0-12-816177-7 , retrieved 2024-10-26
  10. Chakraborty S, Lambie EJ, Bindu S, Mikeladze-Dvali T, Conradt B (2015-12-10). "Engulfment pathways promote programmed cell death by enhancing the unequal segregation of apoptotic potential". Nature Communications. 6 (1): 10126. Bibcode:2015NatCo...610126C. doi:10.1038/ncomms10126. ISSN   2041-1723. PMC   4682117 . PMID   26657541.
  11. Li Z, Lu N, He X, Zhou Z (2013), McCall K, Klein C (eds.), "Monitoring the Clearance of Apoptotic and Necrotic Cells in the Nematode Caenorhabditis elegans", Necrosis, vol. 1004, Totowa, NJ: Humana Press, pp. 183–202, doi:10.1007/978-1-62703-383-1_14, ISBN   978-1-62703-382-4, PMC   4038443 , PMID   23733578
  12. Hedgecock EM, Sulston JE, Thomson JN (1983-06-17). "Mutations Affecting Programmed Cell Deaths in the Nematode Caenorhabditis elegans s". Science. 220 (4603): 1277–1279. Bibcode:1983Sci...220.1277H. doi:10.1126/science.6857247. ISSN   0036-8075. PMID   6857247.
  13. 1 2 3 Beer KB, Fazeli G, Judasova K, Irmisch L, Causemann J, Mansfeld J, et al. (2019-08-02). "Degron-tagged reporters probe membrane topology and enable the specific labelling of membrane-wrapped structures". Nature Communications. 10 (1): 3490. Bibcode:2019NatCo..10.3490B. doi:10.1038/s41467-019-11442-z. ISSN   2041-1723. PMC   6677802 . PMID   31375709.
  14. Levin R, Grinstein S, Canton J (September 2016). "The life cycle of phagosomes: formation, maturation, and resolution". Immunological Reviews. 273 (1): 156–179. doi:10.1111/imr.12439. ISSN   0105-2896.
  15. Wu YC, Stanfield GM, Horvitz HR (2000-03-01). "NUC-1, a Caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis". Genes & Development. 14 (5): 536–548. doi: 10.1101/gad.14.5.536 . ISSN   0890-9369.
  16. 1 2 3 4 Gan Q, Wang X, Zhang Q, Yin Q, Jian Y, Liu Y, et al. (2019-08-05). "The amino acid transporter SLC-36.1 cooperates with PtdIns3P 5-kinase to control phagocytic lysosome reformation". Journal of Cell Biology. 218 (8): 2619–2637. doi:10.1083/jcb.201901074. ISSN   0021-9525. PMC   6683750 . PMID   31235480.
  17. Heckmann BL, Boada-Romero E, Cunha LD, Magne J, Green DR (2017-11-24). "LC3-Associated Phagocytosis and Inflammation". Journal of Molecular Biology. 429 (23): 3561–3576. doi:10.1016/j.jmb.2017.08.012. ISSN   0022-2836. PMC   5743439 . PMID   28847720.
  18. Maurin M, Benoliel AM, Bongrand P, Raoult D (December 1992). "Phagolysosomes of Coxiella burnetii-infected cell lines maintain an acidic pH during persistent infection". Infection and Immunity. 60 (12): 5013–5016. doi:10.1128/iai.60.12.5013-5016.1992. PMC   258270 . PMID   1452331.
  19. Howe D, Mallavia LP (July 2000). "Coxiella burnetii exhibits morphological change and delays phagolysosomal fusion after internalization by J774A.1 cells". Infection and Immunity. 68 (7): 3815–3821. doi:10.1128/iai.68.7.3815-3821.2000. PMC   101653 . PMID   10858189.