Pigeon intelligence

Last updated

Pigeons have featured in numerous experiments in comparative psychology, including experiments concerned with animal cognition, and as a result there is considerable knowledge of pigeon intelligence.

Contents

Available data show[ citation needed ], for example, that:

All these are capacities that are likely to be found in most mammal and bird species. In addition pigeons have unusual, perhaps unique, abilities to learn routes back to their home from long distances. This homing behaviour is different from that of birds that learn migration routes, which usually occurs over a fixed route at fixed times of the year, whereas homing is more flexible; however similar mechanisms may be involved.

Pigeons showed mirror-related behaviours during the mirror test. [1]

Discrimination abilities of pigeons

In an article from 1995, Watanabe, Sakamoto, and Wakita described an experiment which showed that pigeons can be trained to discriminate between paintings by Picasso and by Monet. The birds were first trained on a limited set of paintings. The experiment has shown that a pigeon was able to obtain food by repeated pecking when shown a painting from Picasso; when it was a Monet, pecking had no effect. After a while, the pigeons would only peck when shown Picasso paintings. They were then able to generalize and correctly discriminate between paintings of the two painters not previously shown, and even between cubist and impressionist paintings (cubism and impressionism being the two stylistic schools Picasso and Monet belong to). When the Monet paintings were shown upside down, the pigeons were not able to properly categorize anymore. Showing the cubist works upside down did not have such an effect.

In 1995, the authors won the Ig Nobel Prize in psychology for this work.

In a later paper, Watanabe showed that if pigeons and human college students undergo the same training, their performance in distinguishing between Van Gogh and Chagall paintings is comparable.

The chamber used to train and test pigeons' ability to classify images. Adapted from The pigeons' training environment.png
The chamber used to train and test pigeons' ability to classify images. Adapted from

Similar experiments had shown earlier that pigeons can be trained to distinguish between photos of human beings and those that do not. Other experiments replaced the humans with trees, and among many other examples.

In all these cases, discrimination is quite easy for humans, even though the classes are so complex that no simple distinguishing algorithm or rule can be specified. It has therefore been argued[ citation needed ] that pigeons are able to form "concepts" or "categories" similar to humans, but that interpretation is controversial. Nevertheless, the experiments remain important and often cited examples in cognitive science.

Levenson et al. [2] demonstrated in a 2015 paper that rock dove pigeons (Columba livia), which share many visual system properties with humans, can serve as promising surrogate observers of medical images, a capability not previously documented. The birds were tested on their ability to distinguish benign from malignant human breast histopathology images and could even apply what they had learned to previously unseen images. However, when faced with a more challenging task, they reverted to image memorisation and thus showed little generalisation to novel examples.

See also

Related Research Articles

Operant conditioning, also called instrumental conditioning, is a learning process where behaviors are modified through the association of stimuli with reinforcement or punishment. In it, operants—behaviors that affect one's environment—are conditioned to occur or not occur depending on the environmental consequences of the behavior.

<span class="mw-page-title-main">Animal cognition</span> Intelligence of non-human animals

Animal cognition encompasses the mental capacities of non-human animals including insect cognition. The study of animal conditioning and learning used in this field was developed from comparative psychology. It has also been strongly influenced by research in ethology, behavioral ecology, and evolutionary psychology; the alternative name cognitive ethology is sometimes used. Many behaviors associated with the term animal intelligence are also subsumed within animal cognition.

<span class="mw-page-title-main">Mirror test</span> Animal self-awareness test to determine self-recognition in a mirror

The mirror test—sometimes called the mark test, mirror self-recognition (MSR) test, red spot technique, or rouge test—is a behavioral technique developed in 1970 by American psychologist Gordon Gallup Jr. as an attempt to determine whether an animal possesses the ability of visual self-recognition. The MSR test is the traditional method for attempting to measure physiological and cognitive self-awareness. However, agreement has been reached that animals can be self-aware in ways not measured by the mirror test, such as distinguishing between their own and others' songs and scents.

<span class="mw-page-title-main">Animal training</span> Teaching animals specific responses to specific conditions or stimuli

Animal training is the act of teaching animals specific responses to specific conditions or stimuli. Training may be for purposes such as companionship, detection, protection, and entertainment. The type of training an animal receives will vary depending on the training method used, and the purpose for training the animal. For example, a seeing eye dog will be trained to achieve a different goal than a wild animal in a circus.

Human–animal communication is the communication observed between humans and other animals, ranging from non-verbal cues and vocalizations to the use of language.

<span class="mw-page-title-main">Shaping (psychology)</span> Psychological paradigm for behavior analysis

Shaping is a conditioning paradigm used primarily in the experimental analysis of behavior. The method used is differential reinforcement of successive approximations. It was introduced by B. F. Skinner with pigeons and extended to dogs, dolphins, humans and other species. In shaping, the form of an existing response is gradually changed across successive trials towards a desired target behavior by reinforcing exact segments of behavior. Skinner's explanation of shaping was this:

We first give the bird food when it turns slightly in the direction of the spot from any part of the cage. This increases the frequency of such behavior. We then withhold reinforcement until a slight movement is made toward the spot. This again alters the general distribution of behavior without producing a new unit. We continue by reinforcing positions successively closer to the spot, then by reinforcing only when the head is moved slightly forward, and finally only when the beak actually makes contact with the spot. ... The original probability of the response in its final form is very low; in some cases it may even be zero. In this way we can build complicated operants which would never appear in the repertoire of the organism otherwise. By reinforcing a series of successive approximations, we bring a rare response to a very high probability in a short time. ... The total act of turning toward the spot from any point in the box, walking toward it, raising the head, and striking the spot may seem to be a functionally coherent unit of behavior; but it is constructed by a continual process of differential reinforcement from undifferentiated behavior, just as the sculptor shapes his figure from a lump of clay.

<span class="mw-page-title-main">Bird intelligence</span> Study of intelligence in birds

The difficulty of defining or measuring intelligence in non-human animals makes the subject difficult to study scientifically in birds. In general, birds have relatively large brains compared to their head size. The visual and auditory senses are well developed in most species, though the tactile and olfactory senses are well realized only in a few groups. Birds communicate using visual signals as well as through the use of calls and song. The testing of intelligence in birds is therefore usually based on studying responses to sensory stimuli.

<span class="mw-page-title-main">Domestic pigeon</span> Small domesticated bird

The domestic pigeon or city dove is a pigeon subspecies that was derived from the rock dove. The rock pigeon is the world's oldest domesticated bird. Mesopotamian cuneiform tablets mention the domestication of pigeons more than 5,000 years ago, as do Egyptian hieroglyphics. Research suggests that domestication of pigeons occurred as early as 10,000 years ago.

<span class="mw-page-title-main">Emotion in animals</span> Research into similarities between animal and human emotions

Emotion is defined as any mental experience with high intensity and high hedonic content. The existence and nature of emotions in non-human animals are believed to be correlated with those of humans and to have evolved from the same mechanisms. Charles Darwin was one of the first scientists to write about the subject, and his observational approach has since developed into a more robust, hypothesis-driven, scientific approach. Cognitive bias tests and learned helplessness models have shown feelings of optimism and pessimism in a wide range of species, including rats, dogs, cats, rhesus macaques, sheep, chicks, starlings, pigs, and honeybees. Jaak Panksepp played a large role in the study of animal emotion, basing his research on the neurological aspect. Mentioning seven core emotional feelings reflected through a variety of neuro-dynamic limbic emotional action systems, including seeking, fear, rage, lust, care, panic and play. Through brain stimulation and pharmacological challenges, such emotional responses can be effectively monitored.

Errorless learning was an instructional design introduced by psychologist Charles Ferster in the 1950s as part of his studies on what would make the most effective learning environment. B. F. Skinner was also influential in developing the technique, noting that,

...errors are not necessary for learning to occur. Errors are not a function of learning or vice versa nor are they blamed on the learner. Errors are a function of poor analysis of behavior, a poorly designed shaping program, moving too fast from step to step in the program, and the lack of the prerequisite behavior necessary for success in the program.

In behavioral psychology, stimulus control is a phenomenon in operant conditioning that occurs when an organism behaves in one way in the presence of a given stimulus and another way in its absence. A stimulus that modifies behavior in this manner is either a discriminative stimulus (Sd) or stimulus delta (S-delta). Stimulus-based control of behavior occurs when the presence or absence of an Sd or S-delta controls the performance of a particular behavior. For example, the presence of a stop sign (S-delta) at a traffic intersection alerts the driver to stop driving and increases the probability that "braking" behavior will occur. Such behavior is said to be emitted because it does not force the behavior to occur since stimulus control is a direct result of historical reinforcement contingencies, as opposed to reflexive behavior that is said to be elicited through respondent conditioning.

Discrimination learning is defined in psychology as the ability to respond differently to different stimuli. This type of learning is used in studies regarding operant and classical conditioning. Operant conditioning involves the modification of a behavior by means of reinforcement or punishment. In this way, a discriminative stimulus will act as an indicator to when a behavior will persist and when it will not. Classical conditioning involves learning through association when two stimuli are paired together repeatedly. This conditioning demonstrates discrimination through specific micro-instances of reinforcement and non-reinforcement. This phenomenon is considered to be more advanced than learning styles such as generalization and yet simultaneously acts as a basic unit to learning as a whole. The complex and fundamental nature of discrimination learning allows for psychologists and researchers to perform more in-depth research that supports psychological advancements. Research on the basic principles underlying this learning style has their roots in neuropsychology sub-processes.

<span class="mw-page-title-main">Perceptual learning</span>

Perceptual learning is learning better perception skills such as differentiating two musical tones from one another or categorizations of spatial and temporal patterns relevant to real-world expertise. Examples of this may include reading, seeing relations among chess pieces, and knowing whether or not an X-ray image shows a tumor.

Episodic-like memory is the memory system in animals that is comparable to human episodic memory. The term was first described by Clayton & Dickinson referring to an animal's ability to encode and retrieve information about 'what' occurred during an episode, 'where' the episode took place, and 'when' the episode happened. This ability in animals is considered 'episodic-like' because there is currently no way of knowing whether or not this form of remembering is accompanied by conscious recollection—a key component of Endel Tulving's original definition of episodic memory.

The Colavita visual dominance effect refers to the phenomenon in which study participants respond more often to the visual component of an audiovisual stimulus, when presented with bimodal stimuli.

Imitative learning is a type of social learning whereby new behaviors are acquired via imitation. Imitation aids in communication, social interaction, and the ability to modulate one's emotions to account for the emotions of others, and is "essential for healthy sensorimotor development and social functioning". The ability to match one's actions to those observed in others occurs in humans and animals; imitative learning plays an important role in humans in cultural development. Imitative learning is different from observational learning in that it requires a duplication of the behaviour exhibited by the model, whereas observational learning can occur when the learner observes an unwanted behaviour and its subsequent consequences and as a result learns to avoid that behaviour.

Social learning refers to learning that is facilitated by observation of, or interaction with, another animal or its products. Social learning has been observed in a variety of animal taxa, such as insects, fish, birds, reptiles, amphibians and mammals.

The differential outcomes effect (DOE) is a theory in behaviorism, a branch of psychology, that shows that a positive effect on accuracy occurs in discrimination learning between different stimuli when unique rewards are paired with each individual stimulus. The DOE was first demonstrated in 1970 by Milton Trapold on an experiment with rats. Rats were trained to discriminate between a clicker and a tone by pressing the left and right levers. Half of the rats were trained using the differential outcomes procedure (DOP), where the clicker was paired with sucrose and tone with food pellets. The remaining rats were trained with only sucrose or only food pellets. The rats trained with the DOP were significantly more accurate than those trained with only one type of reinforcement. Since then it has been established through a myriad of experiments that the DOE exists in most species capable of learning.

Number sense in animals is the ability of creatures to represent and discriminate quantities of relative sizes by number sense. It has been observed in various species, from fish to primates. Animals are believed to have an approximate number system, the same system for number representation demonstrated by humans, which is more precise for smaller quantities and less so for larger values. An exact representation of numbers higher than three has not been attested in wild animals, but can be demonstrated after a period of training in captive animals.

Association in psychology refers to a mental connection between concepts, events, or mental states that usually stems from specific experiences. Associations are seen throughout several schools of thought in psychology including behaviorism, associationism, psychoanalysis, social psychology, and structuralism. The idea stems from Plato and Aristotle, especially with regard to the succession of memories, and it was carried on by philosophers such as John Locke, David Hume, David Hartley, and James Mill. It finds its place in modern psychology in such areas as memory, learning, and the study of neural pathways.

References

  1. Epstein, Lanza, & Skinner (1981) R. Epstein, R.P. Lanza and B.F. Skinner, “Self-awareness” in the pigeon, Science 212 695-696
  2. 1 2 Levenson, Richard M.; Krupinski, Elizabeth A.; Navarro, Victor M.; Wasserman, Edward A. (2015-11-18). "Pigeons (Columba livia) as Trainable Observers of Pathology and Radiology Breast Cancer Images". PLOS ONE. 10 (11): e0141357. Bibcode:2015PLoSO..1041357L. doi: 10.1371/journal.pone.0141357 . ISSN   1932-6203. PMC   4651348 . PMID   26581091.