Pladienolide B

Last updated
Pladienolide B
Pladienolide B structure.svg
Names
IUPAC name
[(2S,3S,4E,6S,7R,10R)-7,10-dihydroxy-2-[(2E,4E,6S)-7-[(2R,3R)-3-[(2R,3S)-3-hydroxypentan-2-yl]oxiran-2-yl]-6-methylhepta-2,4-dien-2-yl]-3,7-dimethyl-12-oxo-1-oxacyclododec-4-en-6-yl] acetate
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C30H48O8/c1-8-24(33)21(5)29-25(37-29)16-18(2)10-9-11-19(3)28-20(4)12-13-26(36-22(6)31)30(7,35)15-14-23(32)17-27(34)38-28/h9-13,18,20-21,23-26,28-29,32-33,35H,8,14-17H2,1-7H3/b10-9+,13-12+,19-11+/t18-,20+,21-,23-,24+,25-,26+,28-,29-,30-/m1/s1
    Key: SDOUORKJIJYJNW-QHOUZYGJSA-N
  • CC[C@@H]([C@@H](C)[C@@H]1[C@H](O1)C[C@H](C)/C=C/C=C(\C)/[C@@H]2[C@H](/C=C/[C@@H]([C@](CC[C@H](CC(=O)O2)O)(C)O)OC(=O)C)C)O
Properties
C30H48O8
Molar mass 536.706 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Pladienolide B is a natural product produced by bacterial strain, Streptomyces platensis MER-11107, [1] [2] which is a gram-positive bacteria isolated from soil in Japan. [3] Pladienolide B is a molecule of interest due to its potential anti-cancer properties. Its anti-cancer mode of action includes binding to the SF3B complex in the U2 snRNP (small nuclear ribonuclear protein) in the human spliceosome. [1]

Biosynthesis

As a polyketide, pladienolide B is synthesized in the polyketide synthase (PKS) type I pathway, a biosynthetic pathway that is derived from the fatty acid synthase (FAS) pathway. Polyketides are formed through the condensation of acyl-thioester units. The synthesis of pladienolide B begins with acyl transferase loading propionyl CoA onto the holo (activated) acyl carrier protein (ACP). The molecule is then extended ten times, each time by two carbon units, by iterative PKS (Figure 1). [2] Figure 1 indicates the loading unit (malonyl CoA or methylmalonyl CoA) and tailoring enzymes for each module (turquoise enzyme clusters in part c of Figure 1). After the ten elongation modules, the active site serine residue of thioesterase (TE) acts as a nucleophile by attacking the ketone directly bound to CoA-SH. This nucleophilic attack causes CoA-SH to leave and thus transfers the elongated chain to TE. Then the hydroxyl group on carbon 11 acts as a nucleophile by attacking the terminal ketone so that carbons 1-11 form a cyclic, 12-membered ring, releasing TE in the process. This concludes the PKS portion of the biosynthesis, and thus results in the pladienolide B backbone structure. [2] [4]

Post-PKS modifications: Acetyl-transferase (AT) transfers an acetyl group to carbon 7. The following step is either that a P450 I enzyme (PldB C6-hydroxylase) adds a hydroxyl group on carbon 6, and/or that an epoxide group is added between carbons 18 and 19 by P450 II (PldD C18-C19-epoxidase). Based on the purification results of these post-PKS compounds by Boothe et al., [2] it seems that either hydroxylation or acetylation could occur first, but Boothe et al. [2] found a that hydroxylation seems to occur first more than twice as often as acetylation occurs first. [2] However, regardless of hydroxylation or acetylation occurring first, the result of these tailoring steps yields pladienolide B (Figure 1).

Figure 1: Gene clusters (a) S. platensis Mer-11107 and (b) S. platensis AS6200/MA5455; and pladienolide B biosynthesis with tailoring and post-PKS modifications. Figure 1. Pladienolide B biosynthesis.png
Figure 1: Gene clusters (a) S. platensis Mer-11107 and (b) S. platensis AS6200/MA5455; and pladienolide B biosynthesis with tailoring and post-PKS modifications.

Carbons are numbered using the traditional IUPAC naming system in which C1 is the ketone carbon in the ring, and C23 is the terminal carbon on the chain. [5]

Related Research Articles

Antimycins are produced as secondary metabolites by Streptomyces bacteria, a soil bacteria. These specialized metabolites likely function to kill neighboring organisms in order to provide the streptomyces bacteria with a competitive edge.

Nonribosomal peptides (NRP) are a class of peptide secondary metabolites, usually produced by microorganisms like bacteria and fungi. Nonribosomal peptides are also found in higher organisms, such as nudibranchs, but are thought to be made by bacteria inside these organisms. While there exist a wide range of peptides that are not synthesized by ribosomes, the term nonribosomal peptide typically refers to a very specific set of these as discussed in this article.

<i>Monascus</i> Genus of fungi

Monascus is a genus of mold. Among the known species of this genus, the red-pigmented Monascus purpureus is among the most important because of its use in the production of certain fermented foods in East Asia, particularly China and Japan.

Polyketide synthases (PKSs) are a family of multi-domain enzymes or enzyme complexes that produce polyketides, a large class of secondary metabolites, in bacteria, fungi, plants, and a few animal lineages. The biosyntheses of polyketides share striking similarities with fatty acid biosynthesis.

<span class="mw-page-title-main">Chalcone synthase</span>

Chalcone synthase or naringenin-chalcone synthase (CHS) is an enzyme ubiquitous to higher plants and belongs to a family of polyketide synthase enzymes (PKS) known as type III PKS. Type III PKSs are associated with the production of chalcones, a class of organic compounds found mainly in plants as natural defense mechanisms and as synthetic intermediates. CHS was the first type III PKS to be discovered. It is the first committed enzyme in flavonoid biosynthesis. The enzyme catalyzes the conversion of 4-coumaroyl-CoA and malonyl-CoA to naringenin chalcone.

<span class="mw-page-title-main">Thiolase</span> Enzymes

Thiolases, also known as acetyl-coenzyme A acetyltransferases (ACAT), are enzymes which convert two units of acetyl-CoA to acetoacetyl CoA in the mevalonate pathway.

<span class="mw-page-title-main">Biosynthesis of doxorubicin</span>

Doxorubicin (DXR) is a 14-hydroxylated version of daunorubicin, the immediate precursor of DXR in its biosynthetic pathway. Daunorubicin is more abundantly found as a natural product because it is produced by a number of different wild type strains of streptomyces. In contrast, only one known non-wild type species, streptomyces peucetius subspecies caesius ATCC 27952, was initially found to be capable of producing the more widely used doxorubicin. This strain was created by Arcamone et al. in 1969 by mutating a strain producing daunorubicin, but not DXR, at least in detectable quantities. Subsequently, Hutchinson's group showed that under special environmental conditions, or by the introduction of genetic modifications, other strains of streptomyces can produce doxorubicin. His group has also cloned many of the genes required for DXR production, although not all of them have been fully characterized. In 1996, Strohl's group discovered, isolated and characterized dox A, the gene encoding the enzyme that converts daunorubicin into DXR. By 1999, they produced recombinant Dox A, a Cytochrome P450 oxidase, and found that it catalyzes multiple steps in DXR biosynthesis, including steps leading to daunorubicin. This was significant because it became clear that all daunorubicin producing strains have the necessary genes to produce DXR, the much more therapeutically important of the two. Hutchinson's group went on to develop methods to improve the yield of DXR, from the fermentation process used in its commercial production, not only by introducing Dox A encoding plasmids, but also by introducing mutations to deactivate enzymes that shunt DXR precursors to less useful products, for example baumycin-like glycosides. Some triple mutants, that also over-expressed Dox A, were able to double the yield of DXR. This is of more than academic interest because at that time DXR cost about $1.37 million per kg and current production in 1999 was 225 kg per annum. More efficient production techniques have brought the price down to $1.1 million per kg for the non-liposomal formulation. Although DXR can be produced semi-synthetically from daunorubicin, the process involves electrophilic bromination and multiple steps and the yield is poor. Since daunorubicin is produced by fermentation, it would be ideal if the bacteria could complete DXR synthesis more effectively.

<span class="mw-page-title-main">Tunicamycin</span> Chemical compound

Tunicamycin is a mixture of homologous nucleoside antibiotics that inhibits the UDP-HexNAc: polyprenol-P HexNAc-1-P family of enzymes. In eukaryotes, this includes the enzyme GlcNAc phosphotransferase (GPT), which catalyzes the transfer of N-acetylglucosamine-1-phosphate from UDP-N-acetylglucosamine to dolichol phosphate in the first step of glycoprotein synthesis. Tunicamycin blocks N-linked glycosylation (N-glycans) and treatment of cultured human cells with tunicamycin causes cell cycle arrest in G1 phase. It is used as an experimental tool in biology, e.g. to induce unfolded protein response. Tunicamycin is produced by several bacteria, including Streptomyces clavuligerus and Streptomyces lysosuperificus.

In enzymology, an erythronolide synthase is an enzyme that catalyzes the chemical reaction

Streptogramin A is a group of antibiotics within the larger family of antibiotics known as streptogramins. They are synthesized by the bacteria Streptomyces virginiae. The streptogramin family of antibiotics consists of two distinct groups: group A antibiotics contain a 23-membered unsaturated ring with lactone and peptide bonds while group B antibiotics are depsipeptides. While structurally different, these two groups of antibiotics act synergistically, providing greater antibiotic activity than the combined activity of the separate components. These antibiotics have until recently been commercially manufactured as feed additives in agriculture, although today there is increased interest in their ability to combat antibiotic-resistant bacteria, particularly vancomycin-resistant bacteria.

<span class="mw-page-title-main">Nogalamycin</span> Chemical compound

Nogalamycin is an anthracycline antibiotic produced by the soil bacteria Streptomyces nogalater. It has antitumor properties but it is also highly cardiotoxic. The less cardiotoxic semisynthetic analog menogaril was developed in the 1970s. Currently nogalamycin and menogaril are not used clinically.

<span class="mw-page-title-main">Pikromycin</span> Chemical compound

Pikromycin was studied by Brokmann and Hekel in 1951 and was the first antibiotic macrolide to be isolated. Pikromycin is synthesized through a type I polyketide synthase system in Streptomyces venezuelae, a species of Gram-positive bacterium in the genus Streptomyces. Pikromycin is derived from narbonolide, a 14-membered ring macrolide. Along with the narbonolide backbone, pikromycin includes a desosamine sugar and a hydroxyl group. Although Pikromycin is not a clinically useful antibiotic, it can be used as a raw material to synthesize antibiotic ketolide compounds such as ertythromycins and new epothilones.

<span class="mw-page-title-main">Monocerin</span> Chemical compound

Monocerin is a dihydroisocoumarin and a polyketide metabolite that originates from various fungal species. It has been shown to display antifungal, plant pathogenic, and insecticidal characteristics. Monocerin has been isolated from Dreschlera monoceras, D. ravenelii, Exserohilum turcicum, and Fusarium larvarum.

<span class="mw-page-title-main">Apratoxin A</span> Chemical compound

Apratoxin A - is a cyanobacterial secondary metabolite, known as a potent cytotoxic marine natural product. It is a derivative of the Apratoxin family of cytotoxins. The mixed peptide-polyketide natural product comes from a polyketide synthase/non-ribosomal peptide synthase pathway (PKS/NRPS). This cytotoxin is known for inducing G1-phase cell cycle arrest and apoptosis. This natural product's activity has made it a popular target for developing anticancer derivatives.

Curacin A is a hybrid polyketide synthase (PKS)/nonribosomal peptide synthase (NRPS) derived natural product produced isolated from the cyanobacterium Lyngbya majuscula. Curacin A belongs to a family of natural products including jamaicamide, mupirocin, and pederin that have an unusual terminal alkene. Additionally, Curacin A contains a notable thiazoline ring and a unique cyclopropyl moiety, which is essential to the compound's biological activity. Curacin A has been characterized as potent antiproliferative cytotoxic compound with notable anticancer activity for several cancer lines including renal, colon, and breast cancer. Curacin A has been shown to interact with colchicine binding sites on tubulin, which inhibits microtubule polymerization, an essential process for cell division and proliferation.

Fostriecin is a type I polyketide synthase (PKS) derived natural product, originally isolated from the soil bacterium Streptomyces pulveraceus. It belongs to a class of natural products which characteristically contain a phosphate ester, an α,β-unsaturated lactam and a conjugated linear diene or triene chain produced by Streptomyces. This class includes structurally related compounds cytostatin and phoslactomycin. Fostriecin is a known potent and selective inhibitor of protein serine/threonine phosphatases, as well as DNA topoisomerase II. Due to its activity against protein phosphatases PP2A and PP4 which play a vital role in cell growth, cell division, and signal transduction, fostriecin was looked into for its antitumor activity in vivo and showed in vitro activity against leukemia, lung cancer, breast cancer, and ovarian cancer. This activity is thought to be due to PP2A's assumed role in regulating apoptosis of cells by activating cytotoxic T-lymphocytes and natural killer cells involved in tumor surveillance, along with human immunodeficiency virus-1 (HIV-1) transcription and replication.

Butyrolactol A is an organic chemical compound of interest for its potential use as an antifungal antibiotic.

<span class="mw-page-title-main">Phoslactomycin B</span> Chemical compound

Phoslactomycin (PLM) is a natural product from the isolation of Streptomyces species. This is an inhibitor of the protein serine/threonine phosphatase which is the protein phosphate 2A (PP2A). The PP2A involves the growth factor of the cell such as to induce the formation of mitogen-activated protein interaction and playing a role in cell division and signal transduction. Therefore, PLM is used for the drug that prevents the tumor, cancer, or bacteria. There are nowsaday has 7 kinds of different PLM from PLM A to PLM G which differ the post-synthesis from the biosynthesis of PLM.

Andrimid is an antibiotic natural product that is produced by the marine bacterium Vibrio coralliilyticus. Andrimid is an inhibitor of fatty acid biosynthesis by blocking the carboxyl transfer reaction of acetyl-CoA carboxylase (ACC).

<span class="mw-page-title-main">Peucemycin</span> Chemical compound

Peucemycin is a polyketide produced by Streptomyces peucetius, a Gram-positive filamentous bacteria that also produces the anticancer compounds daunorubicin and doxorubicin. This compound was elucidated from a cryptic biosynthetic gene cluster and is produced under temperature-specific conditions for bacterial growth. Peucemycin has demonstrated bioactivity against growth of S. aureus, P. hauseri, and S. enterica and also is weakly active against cancer cell lines. Peucemycin is biosynthesized through a Type 1 PKS system.

References

  1. 1 2 Trieger, Kelsey A.; La Clair, James J.; Burkart, Michael D. (2020). "Splice Modulation Synergizes Cell Cycle Inhibition". ACS Chemical Biology. 15 (3): 669–674. doi:10.1021/acschembio.9b00833. PMC   7570451 . PMID   32004428.
  2. 1 2 3 4 5 6 7 Booth, Thomas J.; Kalaitzis, John A.; Vuong, Daniel; Crombie, Andrew; Lacey, Ernest; Piggott, Andrew M.; Wilkinson, Barrie (2020-08-12). "Production of novel pladienolide analogues through native expression of a pathway-specific activator". Chemical Science. 11 (31): 8249–8255. doi:10.1039/D0SC01928C. ISSN   2041-6539. PMC   8163091 .
  3. Sakai, Takashi; Sameshima, Tomohiro; Matsufuji, Motoko; Kawamura, Naoto; Dobashi, Kazuyuki; Mizui, Yoshiharu (2004-03-25). "Pladienolides, New Substances from Culture of Streptomyces platensis Mer-11107 I. Taxonomy, Fermentation, Isolation and Screening". The Journal of Antibiotics. 57 (3): 173–179. doi: 10.7164/antibiotics.57.173 . ISSN   0021-8820.
  4. 1 2 Machida, Kazuhiro; Arisawa, Akira; Takeda, Susumu; Tsuchida, Toshio; Aritoku, Yasuhide; Yoshida, Masashi; Ikeda, Haruo (23 November 2008). "Organization of the Biosynthetic Gene Cluster for the Polyketide Antitumor Macrolide, Pladienolide, in Streptomyces platensis Mer-11107". Bioscience, Biotechnology, and Biochemistry. 72 (11): 2946–2952. doi: 10.1271/bbb.80425 . PMID   18997414. S2CID   20711372.
  5. "IUPAC Rules". www.chem.uiuc.edu. Retrieved 2023-06-08.