Polarization (Lie algebra)

Last updated

In representation theory, polarization is the maximal totally isotropic subspace of a certain skew-symmetric bilinear form on a Lie algebra. The notion of polarization plays an important role in construction of irreducible unitary representations of some classes of Lie groups by means of the orbit method [1] as well as in harmonic analysis on Lie groups and mathematical physics.

Contents

Definition

Let be a Lie group, the corresponding Lie algebra and its dual. Let denote the value of the linear form (covector) on a vector . The subalgebra of the algebra is called subordinate of if the condition

,

or, alternatively,

is satisfied. Further, let the group act on the space via coadjoint representation . Let be the orbit of such action which passes through the point and be the Lie algebra of the stabilizer of the point . A subalgebra subordinate of is called a polarization of the algebra with respect to , or, more concisely, polarization of the covector , if it has maximal possible dimensionality, namely

.

Pukanszky condition

The following condition was obtained by L. Pukanszky: [2]

Let be the polarization of algebra with respect to covector and be its annihilator: . The polarization is said to satisfy the Pukanszky condition if

L. Pukanszky has shown that this condition guaranties applicability of the Kirillov's orbit method initially constructed for nilpotent groups to more general case of solvable groups as well. [3]

Properties

Related Research Articles

In the mathematical field of representation theory, a weight of an algebra A over a field F is an algebra homomorphism from A to F, or equivalently, a one-dimensional representation of A over F. It is the algebra analogue of a multiplicative character of a group. The importance of the concept, however, stems from its application to representations of Lie algebras and hence also to representations of algebraic and Lie groups. In this context, a weight of a representation is a generalization of the notion of an eigenvalue, and the corresponding eigenspace is called a weight space.

In mathematics, a Lie superalgebra is a generalisation of a Lie algebra to include a Z2‑grading. Lie superalgebras are important in theoretical physics where they are used to describe the mathematics of supersymmetry. In most of these theories, the even elements of the superalgebra correspond to bosons and odd elements to fermions.

In the mathematical theory of compact Lie groups a special role is played by torus subgroups, in particular by the maximal torus subgroups.

In linear algebra and functional analysis, the min-max theorem, or variational theorem, or Courant–Fischer–Weyl min-max principle, is a result that gives a variational characterization of eigenvalues of compact Hermitian operators on Hilbert spaces. It can be viewed as the starting point of many results of similar nature.

<span class="mw-page-title-main">Cartan subalgebra</span> Nilpotent subalgebra of a Lie algebra

In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra of a Lie algebra that is self-normalising. They were introduced by Élie Cartan in his doctoral thesis. It controls the representation theory of a semi-simple Lie algebra over a field of characteristic .

<span class="mw-page-title-main">Semisimple Lie algebra</span> Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras.

<span class="mw-page-title-main">Symmetric space</span> A (pseudo-)Riemannian manifold whose geodesics are reversible.

In mathematics, a symmetric space is a Riemannian manifold whose group of symmetries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification. Symmetric spaces commonly occur in differential geometry, representation theory and harmonic analysis.

In mathematics, the coadjoint representation of a Lie group is the dual of the adjoint representation. If denotes the Lie algebra of , the corresponding action of on , the dual space to , is called the coadjoint action. A geometrical interpretation is as the action by left-translation on the space of right-invariant 1-forms on .

In mathematics, specifically in symplectic geometry, the momentum map is a tool associated with a Hamiltonian action of a Lie group on a symplectic manifold, used to construct conserved quantities for the action. The momentum map generalizes the classical notions of linear and angular momentum. It is an essential ingredient in various constructions of symplectic manifolds, including symplectic (Marsden–Weinstein) quotients, discussed below, and symplectic cuts and sums.

In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.

In mathematics, the spin representations are particular projective representations of the orthogonal or special orthogonal groups in arbitrary dimension and signature. More precisely, they are two equivalent representations of the spin groups, which are double covers of the special orthogonal groups. They are usually studied over the real or complex numbers, but they can be defined over other fields.

In algebra, a parabolic Lie algebra is a subalgebra of a semisimple Lie algebra satisfying one of the following two conditions:

In mathematics, a commutation theorem for traces explicitly identifies the commutant of a specific von Neumann algebra acting on a Hilbert space in the presence of a trace.

<span class="mw-page-title-main">Structure constants</span> Coefficients of an algebra over a field

In mathematics, the structure constants or structure coefficients of an algebra over a field are the coefficients of the basis expansion of the products of basis vectors. Because the product operation in the algebra is bilinear, by linearity knowing the product of basis vectors allows to compute the product of any elements . Therefore, the structure constants can be used to specify the product operation of the algebra. Given the structure constants, the resulting product is obtained by bilinearity and can be uniquely extended to all vectors in the vector space, thus uniquely determining the product for the algebra.

In mathematics, a regular element of a Lie algebra or Lie group is an element whose centralizer has dimension as small as possible. For example, in a complex semisimple Lie algebra, an element is regular if its centralizer in has dimension equal to the rank of , which in turn equals the dimension of some Cartan subalgebra . An element a Lie group is regular if its centralizer has dimension equal to the rank of .

Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.

<span class="mw-page-title-main">Complexification (Lie group)</span> Universal construction of a complex Lie group from a real Lie group

In mathematics, the complexification or universal complexification of a real Lie group is given by a continuous homomorphism of the group into a complex Lie group with the universal property that every continuous homomorphism of the original group into another complex Lie group extends compatibly to a complex analytic homomorphism between the complex Lie groups. The complexification, which always exists, is unique up to unique isomorphism. Its Lie algebra is a quotient of the complexification of the Lie algebra of the original group. They are isomorphic if the original group has a quotient by a discrete normal subgroup which is linear.

In representation theory, a branch of mathematics, the theorem of the highest weight classifies the irreducible representations of a complex semisimple Lie algebra . There is a closely related theorem classifying the irreducible representations of a connected compact Lie group . The theorem states that there is a bijection

In mathematics, specifically in representation theory, a Borel subalgebra of a Lie algebra is a maximal solvable subalgebra. The notion is named after Armand Borel.

<span class="mw-page-title-main">Glossary of Lie groups and Lie algebras</span>

This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.

References

  1. Corwin, Lawrence; GreenLeaf, Frderick P. (25 January 1981). "Rationally varying polarizing subalgebras in nilpotent Lie algebras". Proceedings of the American Mathematical Society. 81 (1). Berlin: American Mathematical Society: 27–32. doi: 10.2307/2043981 . ISSN   1088-6826. Zbl   0477.17001.
  2. Dixmier, Jacques; Duflo, Michel; Hajnal, Andras; Kadison, Richard; Korányi, Adam; Rosenberg, Jonathan; Vergne, Michele (April 1998). "Lajos Pukánszky (1928 – 1996)" (PDF). Notices of the American Mathematical Society. 45 (4). American Mathematical Society: 492–499. ISSN   1088-9477.
  3. Pukanszky, Lajos (March 1967). "On the theory of exponential groups" (PDF). Transactions of the American Mathematical Society. 126. American Mathematical Society: 487–507. doi: 10.1090/S0002-9947-1967-0209403-7 . ISSN   1088-6850. MR   0209403. Zbl   0207.33605.
  4. 1 2 3 Kirillov, A. A. (1976) [1972], Elements of the theory of representations, Grundlehren der Mathematischen Wissenschaften, vol. 220, Berlin, New York: Springer-Verlag, ISBN   978-0-387-07476-4, MR   0412321
  5. 1 2 Dixmier, Jacques (1996) [1974], Enveloping algebras, Graduate Studies in Mathematics, vol. 11, Providence, R.I.: American Mathematical Society, ISBN   978-0-8218-0560-2, MR   0498740