Polyarc reactor

Last updated

The Polyarc reactor [1] is a scientific tool for the measurement of organic molecules. It is paired with a flame ionization detector (FID) in a gas chromatograph (GC) to improve the sensitivity of the FID and give a uniform detector response for all organic molecules (GC-Polyarc/FID).

Contents

The reactor converts the carbon atoms of organic molecules in GC column effluents into methane before reaching the FID. The resulting detector response is uniform on a per-carbon basis and avoids the need for response factors and calibration standards for each molecule. The GC-Polyarc/FID method can improve the response of the FID to a number of molecules with poor/low response including, carbon monoxide (CO), carbon dioxide (CO2), hydrogen cyanide (HCN), formamide (CH3NO), formaldehyde (CH2O) and formic acid (CH2O2), because these molecules are converted to methane.

History

The concept of using a post-column catalytic reactor to enhance the response of the FID was described by Kenneth Porter & D.H. Volman, [2] for the reduction of carbon dioxide and carbon monoxide to methane using a nickel catalyst. This process was later refined by Johns & Thompson, [3] and is now commonplace in many laboratories, colloquially referred to as a methanizer. This device is limited to the conversion of carbon dioxide and carbon monoxide to methane, and the nickel catalysts are poisoned by species such as sulfur and ethylene.

The use of two reactors in series for the subsequent combustion and then reduction of organic molecules is described by Takuro Watanabe's group [4] [5] and Paul Dauenhauer's group [6] using separate reactors for oxidation and reduction. The authors demonstrate the effectiveness for this technique in qualifying traceable standards and the analysis of mixtures without calibrations.

The Polyarc reactor combines the combustion and reduction zones into a single microreactor using proprietary catalyst blends that efficiently convert organic molecules to methane. [7]

Operating Principle

Chemical Reactions

The Polyarc reactor operates by converting organic analytes after GC separation into methane before detection by FID. The oxidation and reduction reactions occur sequentially, wherein the organic compound is first combusted into molecules of carbon dioxide, which are subsequently reduced to methane molecules. The following reactions demonstrate the combustion/reduction process for formic acid.

HCO2H + 0.5O2 ↔ CO2 + H2O

CO2 + 4H2 ↔ CH4 + 2H2O

The reactions are faster compared to the time scales of typical chromatography, resulting in manageable peak broadening and tailing. [7] Elements other than carbon are not ionized in the hydrogen and oxygen flames of the FID and thus do not contribute to the FID signal.

Effect on the FID

Only the CHO+ ions formed from the ionization of carbon compounds are detected. [8] Thus, the non-methane byproducts of the reactions are not detected by the FID.

Since every compound goes through the catalyst bed in the reactor, it has the ability to alter certain substances that might be harmful or negatively affect the efficiency and durability of the FID into safer forms. For instance, cyanide is catalytically changed into methane, water, and nitrogen.

Advantages and Disadvantages

Advantages

Disadvantages

Benefits over Methanizers

Operation and Data Analysis

The Polyarc reactor needs hydrogen and air, which are both gases used in any existing FID setup. Software for capturing and analyzing FID signals remains applicable, and no extra software is necessary for the device. Gas flows to the device are controlled using an external control box that must be calibrated manually for the desired flows of air and hydrogen. The detector's overall response can be analyzed either by an external or an internal standard method.

In the external standard method, the FID signal is correlated to the concentration of carbon separately from the analysis. In practice, this entails the injection of any carbon species at varying amounts to create a plot of signal (i.e., peak area) versus injected carbon amount (e.g., moles of carbon). The user should take care to account for any sample splitting, adsorption, inlet discrimination, and leaks. The data should form a line with a slope, m, and an intercept, b. The inverse of this line can be used to determine the amount of carbon in any subsequent injection from any compound.

This is different from a typical FID calibration where this procedure would need to be completed for each compound to account for the relative response differences. The calibration should be examined periodically to account for catalyst deactivation and other sources of detector drift.

In the internal standard method, the sample is doped with a known amount of some organic molecule and the amount of all other species can be derived from their relative response to the internal standard (IS). The IS can be any organic molecule and should be chosen for ease of use and compatibility with the compounds in the mixture. For example, one could add 0.01 g of methanol as the IS to 0.9 g of gasoline. The 1 wt% mixture of methanol/gasoline is then injected and the concentration of all other species can be determined from their relative response to methanol on a carbon basis,

The effects of injection-to-injection variability resulting from different injection volumes, varying split ratios and leaks are eliminated with the internal standard method. However, inlet discrimination caused by adsorption, reaction, or preferential vaporization in the inlet can lead to accuracy issues when the internal standard is influenced differently than the analyte.

Any non-carbon species that would not be detected in a traditional FID setup (e.g. water, nitrogen, ammonia) will not be detected with Polyarc/FID. This detector can be paired with other detectors that give complementary information such as the mass spectrometer or thermal conductivity detector.

Related Research Articles

<span class="mw-page-title-main">Haber process</span> Main process of ammonia production

The Haber process, also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. The German chemists Fritz Haber and Carl Bosch developed it in the first decade of the 20th century. The process converts atmospheric nitrogen (N2) to ammonia (NH3) by a reaction with hydrogen (H2) using an iron metal catalyst under high temperatures and pressures. This reaction is slightly exothermic (i.e. it releases energy), meaning that the reaction is favoured at lower temperatures and higher pressures. It decreases entropy, complicating the process. Hydrogen is produced via steam reforming, followed by an iterative closed cycle to react hydrogen with nitrogen to produce ammonia.

<span class="mw-page-title-main">Gas chromatography</span> Type of chromatography

Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. In preparative chromatography, GC can be used to prepare pure compounds from a mixture.

The Bosch reaction is a catalytic chemical reaction between carbon dioxide (CO2) and hydrogen (H2) that produces elemental carbon (C,graphite), water, and a 10% return of invested heat. CO2 is usually reduced by H2 to carbon in presence of a catalyst (e.g. iron (Fe)) and requires a temperature level of 530–730 °C (986–1,346 °F).

<span class="mw-page-title-main">Steam reforming</span> Method for producing hydrogen and carbon monoxide from hydrocarbon fuels

Steam reforming or steam methane reforming (SMR) is a method for producing syngas (hydrogen and carbon monoxide) by reaction of hydrocarbons with water. Commonly natural gas is the feedstock. The main purpose of this technology is hydrogen production. The reaction is represented by this equilibrium:

<span class="mw-page-title-main">Heterogeneous catalysis</span> Type of catalysis involving reactants & catalysts in different phases of matter

Heterogeneous catalysis is catalysis where the phase of catalysts differs from that of the reactants or products. The process contrasts with homogeneous catalysis where the reactants, products and catalyst exist in the same phase. Phase distinguishes between not only solid, liquid, and gas components, but also immiscible mixtures, or anywhere an interface is present.

<span class="mw-page-title-main">Total organic carbon</span> Concentration of organic carbon in a sample

Total organic carbon (TOC) is an analytical parameter representing the concentration of organic carbon in a sample. TOC determinations are made in a variety of application areas. For example, TOC may be used as a non-specific indicator of water quality, or TOC of source rock may be used as one factor in evaluating a petroleum play. For marine surface sediments average TOC content is 0.5% in the deep ocean, and 2% along the eastern margins.

Acidogenesis is the second stage in the four stages of anaerobic digestion:

<span class="mw-page-title-main">Flame ionization detector</span> Type of gas detector used in gas chromatography

A flame ionization detector (FID) is a scientific instrument that measures analytes in a gas stream. It is frequently used as a detector in gas chromatography. The measurement of ion per unit time make this a mass sensitive instrument. Standalone FIDs can also be used in applications such as landfill gas monitoring, fugitive emissions monitoring and internal combustion engine emissions measurement in stationary or portable instruments.

Microbial metabolism is the means by which a microbe obtains the energy and nutrients it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's ecological niche, and often allow for that microbe to be useful in industrial processes or responsible for biogeochemical cycles.

A methane reformer is a device based on steam reforming, autothermal reforming or partial oxidation and is a type of chemical synthesis which can produce pure hydrogen gas from methane using a catalyst. There are multiple types of reformers in development but the most common in industry are autothermal reforming (ATR) and steam methane reforming (SMR). Most methods work by exposing methane to a catalyst at high temperature and pressure.

The thermal conductivity detector (TCD), also known as a katharometer, is a bulk property detector and a chemical specific detector commonly used in gas chromatography. This detector senses changes in the thermal conductivity of the column eluent and compares it to a reference flow of carrier gas. Since most compounds have a thermal conductivity much less than that of the common carrier gases of helium or hydrogen, when an analyte elutes from the column the effluent thermal conductivity is reduced, and a detectable signal is produced.

<span class="mw-page-title-main">Methane</span> Hydrocarbon compound (CH₄); main component of natural gas

Methane is a chemical compound with the chemical formula CH4. It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Earth makes it an economically attractive fuel, although capturing and storing it poses technical challenges due to its gaseous state under normal conditions for temperature and pressure.

The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this fuel cell glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to name but a few.

Reactive flash volatilization (RFV) is a chemical process that rapidly converts nonvolatile solids and liquids to volatile compounds by thermal decomposition for integration with catalytic chemistries.

<span class="mw-page-title-main">Electrocatalyst</span> Catalyst participating in electrochemical reactions

An electrocatalyst is a catalyst that participates in electrochemical reactions. Electrocatalysts are a specific form of catalysts that function at electrode surfaces or, most commonly, may be the electrode surface itself. An electrocatalyst can be heterogeneous such as a platinized electrode. Homogeneous electrocatalysts, which are soluble, assist in transferring electrons between the electrode and reactants, and/or facilitate an intermediate chemical transformation described by an overall half reaction. Major challenges in electrocatalysts focus on fuel cells.

The electrochemical reduction of carbon dioxide, also known as CO2RR, is the conversion of carbon dioxide to more reduced chemical species using electrical energy. It represents one potential step in the broad scheme of carbon capture and utilization.

Carbon dioxide reforming is a method of producing synthesis gas from the reaction of carbon dioxide with hydrocarbons such as methane with the aid of noble metal catalysts. Synthesis gas is conventionally produced via the steam reforming reaction or coal gasification. In recent years, increased concerns on the contribution of greenhouse gases to global warming have increased interest in the replacement of steam as reactant with carbon dioxide.

The first time a catalyst was used in the industry was in 1746 by J. Roebuck in the manufacture of lead chamber sulfuric acid. Since then catalysts have been in use in a large portion of the chemical industry. In the start only pure components were used as catalysts, but after the year 1900 multicomponent catalysts were studied and are now commonly used in the industry.

Methanizer is an appliance used in gas chromatography (GC), which allows the user to detect very low concentrations of carbon monoxide and carbon dioxide. It consists of a flame ionization detector, preceded by a hydrogenating reactor, which converts CO2 and CO into methane CH4. Methanizers contain a hydrogenation catalyst to achieve this conversion. Nickel is commonly used as the catalyst and there are alternatives available.

Methane functionalization is the process of converting methane in its gaseous state to another molecule with a functional group, typically methanol or acetic acid, through the use of transition metal catalysts.

References

  1. "Polyarc". ARC. Retrieved 2021-03-10.
  2. Porter, K. and Volman, D.H., Anal. Chem 34 (1962) 748-9.
  3. Johns, T. and Thompson, B., 16th Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, Mar. 1965.
  4. Watanabe, T., Kato, K., Matsumoto, N., and Maeda, T., Chromatography, 27 (2006) 1-7.
  5. Watanabe, T., Kato, K., Matsumoto, N., and Maeda T., Talanta, 72 (2007) 1655-8.
  6. Maduskar, S., Teixeira, AR., Paulsen, A.D., Krumm, C., Mountziaris, T.J., Fan, W., and Dauenhauer, P.J., Lab Chip, 15 (2015) 440-7.
  7. 1 2 Beach, C., Krumm, C., Spanjers, C., Maduskar, S., Jones, A., and Dauenhauer, P., Analyst 141 (2016) 1627-32.
  8. Holm, T., J. Chromatogr. A, 842 (1999) 221-227.
  9. "Polyarc® System | FAQs". Activated Research Company. Retrieved 2024-01-15.