Position error is one of the errors affecting the systems in an aircraft for measuring airspeed and altitude. [1] [2] It is not practical or necessary for an aircraft to have an airspeed indicating system and an altitude indicating system that are exactly accurate. A small amount of error is tolerable. It is caused by the location of the static vent that supplies air pressure to the airspeed indicator and altimeter.
All aircraft are equipped with a small hole in the surface of the aircraft called the static port. The air pressure in the vicinity of the static port is conveyed by a conduit to the altimeter and the airspeed indicator. This static port and the conduit constitute the aircraft's static system. The objective of the static system is to sense the pressure of the air at the altitude at which the aircraft is flying. In an ideal static system the air pressure fed to the altimeter and airspeed indicator is equal to the pressure of the air at the altitude at which the aircraft is flying.
As the air flows past an aircraft in flight, the streamlines are affected by the presence of the aircraft, and the speed of the air relative to the aircraft is different at different positions on the aircraft's outer surface. In consequence of Bernoulli's principle, the different speeds of the air result in different pressures at different positions on the aircraft's surface. [3] The ideal position for a static port is a position where the local air pressure in flight is always equal to the pressure remote from the aircraft, however there is no position on an aircraft where this ideal situation exists for all angles of attack. When deciding on a position for a static port, aircraft designers attempt to find a position where the error between static pressure and free-stream pressure is a minimum across the operating range of angle of attack of the aircraft. The residual error at any given angle of attack is called the position error. [4]
Position error affects the indicated airspeed and the indicated altitude. Aircraft manufacturers use the aircraft flight manual to publish details of the error in indicated airspeed and indicated altitude across the operating range of speeds. In many aircraft, the effect of position error on airspeed is shown as the difference between indicated airspeed and calibrated airspeed. In some low-speed aircraft, the position error is shown as the difference between indicated airspeed and equivalent airspeed.
Bernoulli's principle states that total pressure (or stagnation pressure) is constant along a streamline. [5] There is no variation in stagnation pressure, regardless of the position on the streamline where it is measured. There is no position error associated with stagnation pressure.
The pitot tube supplies pressure to the airspeed indicator. Pitot pressure is equal to stagnation pressure providing the pitot tube is aligned with the local airflow, it is located outside the boundary layer, and outside the wash from the propeller. Pitot pressure can suffer alignment error but it is not vulnerable to position error.
Aircraft design standards specify a maximum amount of Pitot-static system error. The error in indicated altitude must not be excessive because it is important for pilots to know their altitude with reasonable accuracy for the purpose of traffic separation. US Federal Aviation Regulations, Part 23, [6] §23.1325(e) includes the following requirement for the static pressure system:
The error in indicated airspeed must also not be excessive. Part 23, §23.1323(b) includes the following requirement for the airspeed indicating system:
For the purpose of complying with an aircraft design standard that specifies a maximum permissible error in the airspeed indicating system it is necessary to measure the position error in a representative aircraft. There are many different methods for measuring position error. Some of the more common methods are:
In fluid dynamics, the Mach number is a dimensionless quantity representing the ratio of flow velocity past a boundary to the local speed of sound.
A pitottube, also known as pitot probe, is a flow measurement device used to measure fluid flow velocity. The pitot tube was invented by the French engineer Henri Pitot in the early 18th century and was modified to its modern form in the mid-19th century by French scientist Henry Darcy. It is widely used to determine the airspeed of an aircraft, water speed of a boat, and to measure liquid, air and gas flow velocities in certain industrial applications.
An altimeter or an altitude meter is an instrument used to measure the altitude of an object above a fixed level. The measurement of altitude is called altimetry, which is related to the term bathymetry, the measurement of depth under water. The most common unit for altimeter calibration worldwide is hectopascals (hPa), except for North America and Japan where inches of mercury (inHg) are used. To obtain an accurate altitude reading in either feet or meters, the local barometric pressure must be calibrated correctly.
In fluid dynamics, Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy. The principle is named after Daniel Bernoulli who published it in his book Hydrodynamica in 1738. Although Bernoulli deduced that pressure decreases when the flow speed increases, it was Leonhard Euler who derived Bernoulli's equation in its usual form in 1752. The principle is only applicable for isentropic flows: when the effects of irreversible processes and non-adiabatic processes are small and can be neglected.
Flight instruments are the instruments in the cockpit of an aircraft that provide the pilot with data about the flight situation of that aircraft, such as altitude, airspeed, vertical speed, heading and much more other crucial information in flight. They improve safety by allowing the pilot to fly the aircraft in level flight, and make turns, without a reference outside the aircraft such as the horizon. Visual flight rules (VFR) require an airspeed indicator, an altimeter, and a compass or other suitable magnetic direction indicator. Instrument flight rules (IFR) additionally require a gyroscopic pitch-bank, direction and rate of turn indicator, plus a slip-skid indicator, adjustable altimeter, and a clock. Flight into Instrument meteorological conditions (IMC) require radio navigation instruments for precise takeoffs and landings.
A variometer – also known as a rate of climb and descent indicator (RCDI), rate-of-climb indicator, vertical speed indicator (VSI), or vertical velocity indicator (VVI) – is one of the flight instruments in an aircraft used to inform the pilot of the rate of descent or climb. It can be calibrated in metres per second, feet per minute or knots, depending on country and type of aircraft. It is typically connected to the aircraft's external static pressure source.
In fluid dynamics, angle of attack is the angle between a reference line on a body and the vector representing the relative motion between the body and the fluid through which it is moving. Angle of attack is the angle between the body's reference line and the oncoming flow. This article focuses on the most common application, the angle of attack of a wing or airfoil moving through air.
The airspeed indicator (ASI) or airspeed gauge is a flight instrument indicating the airspeed of an aircraft in kilometers per hour (km/h), knots (kn), miles per hour (MPH) and/or meters per second (m/s). The recommendation by ICAO is to use km/h, however knots is currently the most used unit. The ASI measures the pressure differential between static pressure from the static port, and total pressure from the pitot tube. This difference in pressure is registered with the ASI pointer on the face of the instrument.
The attitude indicator (AI), formerly known as the gyro horizon or artificial horizon, is a flight instrument that informs the pilot of the aircraft orientation relative to Earth's horizon, and gives an immediate indication of the smallest orientation change. The miniature aircraft and horizon bar mimic the relationship of the aircraft relative to the actual horizon. It is a primary instrument for flight in instrument meteorological conditions.
Aeroperú Flight 603 was a scheduled flight from Miami International Airport in Miami, Florida, US (KMIA), to Comodoro Arturo Merino Benítez International Airport in Santiago, Chile (SCEL), with stopover in Peru. On 2 October 1996, the Boeing 757-23A aircraft flying the final leg of the flight crashed, killing all 70 people aboard.
Airspeed is the speed of an aircraft relative to the air. Among the common conventions for qualifying airspeed are indicated airspeed ("IAS"), calibrated airspeed ("CAS"), equivalent airspeed ("EAS"), true airspeed ("TAS"), and density airspeed.
The true airspeed of an aircraft is the speed of the aircraft relative to the airmass in which it is flying. The true airspeed is important information for accurate navigation of an aircraft. Traditionally it is measured using an analogue TAS indicator, but as the Global Positioning System has become available for civilian use, the importance of such analogue instruments has decreased. Since indicated airspeed is a better indicator of power used and lift available, True airspeed is not used for controlling the aircraft during taxiing, takeoff, climb, descent, approach or landing; for these purposes the Indicated airspeed – IAS or KIAS – is used. However, since indicated airspeed only shows true speed through the air at standard sea level pressure and temperature, a TAS meter is necessary for navigation purposes at cruising altitude in less dense air. The IAS meter reads very nearly the TAS at lower altitude and at lower speed. On jet airliners the TAS meter is usually hidden at speeds below 200 knots (370 km/h). Neither provides for accurate speed over the ground, since surface winds or winds aloft are not taken into account.
Indicated airspeed (IAS) is the airspeed read directly from the airspeed indicator (ASI) on an aircraft, driven by the pitot-static system. It uses the difference between total pressure and static pressure, provided by the system, to either mechanically or electronically measure dynamic pressure. The dynamic pressure includes terms for both density and airspeed. Since the airspeed indicator cannot know the density, it is by design calibrated to assume the sea level standard atmospheric density when calculating airspeed. Since the actual density will vary considerably from this assumed value as the aircraft changes altitude, IAS varies considerably from true airspeed (TAS), the relative velocity between the aircraft and the surrounding air mass. Calibrated airspeed (CAS) is the IAS corrected for instrument and position error.
Calibrated airspeed (CAS) is indicated airspeed corrected for instrument and position error.
A pitot-static system is a system of pressure-sensitive instruments that is most often used in aviation to determine an aircraft's airspeed, Mach number, altitude, and altitude trend. A pitot-static system generally consists of a pitot tube, a static port, and the pitot-static instruments. Other instruments that might be connected are air data computers, flight data recorders, altitude encoders, cabin pressurization controllers, and various airspeed switches. Errors in pitot-static system readings can be extremely dangerous as the information obtained from the pitot static system, such as altitude, is potentially safety-critical. Several commercial airline disasters have been traced to a failure of the pitot-static system.
An air data computer (ADC) is an essential avionics component found in modern aircraft. This computer, rather than individual instruments, can determine the calibrated airspeed, Mach number, altitude, and altitude trend data from an aircraft's pitot-static system. In some very high speed aircraft such as the Space Shuttle, equivalent airspeed is calculated instead of calibrated airspeed.
A primary flight display or PFD is a modern aircraft instrument dedicated to flight information. Much like multi-function displays, primary flight displays are built around a Liquid-crystal display or CRT display device. Representations of older six pack or "steam gauge" instruments are combined on one compact display, simplifying pilot workflow and streamlining cockpit layouts.
In fluid dynamics, stagnation pressure is the static pressure at a stagnation point in a fluid flow. At a stagnation point the fluid velocity is zero. In an incompressible flow, stagnation pressure is equal to the sum of the free-stream static pressure and the free-stream dynamic pressure.
In fluid mechanics the term static pressure has several uses:
A Machmeter is an aircraft pitot-static system flight instrument that shows the ratio of the true airspeed to the speed of sound, a dimensionless quantity called Mach number. This is shown on a Machmeter as a decimal fraction. An aircraft flying at the speed of sound is flying at a Mach number of one, expressed as Mach 1.