In electrodynamics, Poynting's theorem is a statement of conservation of energy for electromagnetic fields developed by British physicist John Henry Poynting. [1] It states that in a given volume, the stored energy changes at a rate given by the work done on the charges within the volume, minus the rate at which energy leaves the volume. It is only strictly true in media which is not dispersive, but can be extended for the dispersive case. [2] The theorem is analogous to the work-energy theorem in classical mechanics, and mathematically similar to the continuity equation.
Poynting's theorem states that the rate of energy transfer per unit volume from a region of space equals the rate of work done on the charge distribution in the region, plus the energy flux leaving that region.
Mathematically:
where:
Using the divergence theorem, Poynting's theorem can also be written in integral form:
where
In an electrical engineering context the theorem is sometimes written with the energy density term u expanded as shown.[ citation needed ] This form resembles the continuity equation:
where
The rate of work done by the electromagnetic field on the infinitesimal charge is given by the Lorentz Force Law as: (the dot product because from the definition of cross product the cross product of v and B is perpendicular to v. Where is the volume charge density and is the current density at the point and time where is the velocity of the charge dq. The rate of work done on the whole charges in the volume V will be the volume integral
By Ampère's circuital law: (Note that the H and D forms of the magnetic and electric fields are used here. The B and E forms could also be used in an equivalent derivation.) [3]
Substituting this into the expression for rate of work gives:
Using the vector identity :
By Faraday's Law: giving:
Continuing the derivation requires the following assumptions: [2]
It can be shown [4] that: and and so:
Returning to the equation for rate of work,
Since the volume is arbitrary, this can be cast in differential form as: where is the Poynting vector.
In a macroscopic medium, electromagnetic effects are described by spatially averaged (macroscopic) fields. The Poynting vector in a macroscopic medium can be defined self-consistently with microscopic theory, in such a way that the spatially averaged microscopic Poynting vector is exactly predicted by a macroscopic formalism. This result is strictly valid in the limit of low-loss and allows for the unambiguous identification of the Poynting vector form in macroscopic electrodynamics. [5] [6]
It is possible to derive alternative versions of Poynting's theorem. [7] Instead of the flux vector E × H as above, it is possible to follow the same style of derivation, but instead choose E × B, the Minkowski form D × B, or perhaps D × H. Each choice represents the response of the propagation medium in its own way: the E × B form above has the property that the response happens only due to electric currents, while the D × H form uses only (fictitious) magnetic monopole currents. The other two forms (Abraham and Minkowski) use complementary combinations of electric and magnetic currents to represent the polarization and magnetization responses of the medium. [7]
The derivation of the statement is dependent on the assumption that the materials the equation models can be described by a set of susceptibility properties that are linear, isotropic, homogenous and independent of frequency. [8] The assumption that the materials have no absorption must also be made. A modification to Poynting's theorem to account for variations includes a term for the rate of non-Ohmic absorption in a material, which can be calculated by a simplified approximation based on the Drude model. [8]
This form of the theorem is useful in Antenna theory, where one has often to consider harmonic fields propagating in the space. In this case, using phasor notation, and . Then the following mathematical identity holds:
where is the current density.
Note that in free space, and are real, thus, taking the real part of the above formula, it expresses the fact that the averaged radiated power flowing through is equal to the work on the charges.
In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields. The Lorentz force, on the other hand, is a physical effect that occurs in the vicinity of electrically neutral, current-carrying conductors causing moving electrical charges to experience a magnetic force.
In vector calculus and differential geometry the generalized Stokes theorem, also called the Stokes–Cartan theorem, is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or and the divergence theorem is the case of a volume in Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.
The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).
In physics, the Poynting vector represents the directional energy flux or power flow of an electromagnetic field. The SI unit of the Poynting vector is the watt per square metre (W/m2); kg/s3 in base SI units. It is named after its discoverer John Henry Poynting who first derived it in 1884. Nikolay Umov is also credited with formulating the concept. Oliver Heaviside also discovered it independently in the more general form that recognises the freedom of adding the curl of an arbitrary vector field to the definition. The Poynting vector is used throughout electromagnetics in conjunction with Poynting's theorem, the continuity equation expressing conservation of electromagnetic energy, to calculate the power flow in electromagnetic fields.
In physics, Gauss's law, also known as Gauss's flux theorem, is one of Maxwell's equations. It is an application of the divergence theorem, and it relates the distribution of electric charge to the resulting electric field.
In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, is a theorem relating the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed.
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).
In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.
In fluid dynamics, two types of stream function are defined:
In vector calculus, a conservative vector field is a vector field that is the gradient of some function. A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the vector field under the line integral being conservative. A conservative vector field is also irrotational; in three dimensions, this means that it has vanishing curl. An irrotational vector field is necessarily conservative provided that the domain is simply connected.
In mathematical physics, scalar potential describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a scalar field in three-space: a directionless value (scalar) that depends only on its location. A familiar example is potential energy due to gravity.
In physics and mathematics, the Helmholtz decomposition theorem or the fundamental theorem of vector calculus states that certain differentiable vector fields can be resolved into the sum of an irrotational (curl-free) vector field and a solenoidal (divergence-free) vector field. In physics, often only the decomposition of sufficiently smooth, rapidly decaying vector fields in three dimensions is discussed. It is named after Hermann von Helmholtz.
In classical electromagnetism, reciprocity refers to a variety of related theorems involving the interchange of time-harmonic electric current densities (sources) and the resulting electromagnetic fields in Maxwell's equations for time-invariant linear media under certain constraints. Reciprocity is closely related to the concept of symmetric operators from linear algebra, applied to electromagnetism.
In physics, charge conservation is the principle, of experimental nature, that the total electric charge in an isolated system never changes. The net quantity of electric charge, the amount of positive charge minus the amount of negative charge in the universe, is always conserved. Charge conservation, considered as a physical conservation law, implies that the change in the amount of electric charge in any volume of space is exactly equal to the amount of charge flowing into the volume minus the amount of charge flowing out of the volume. In essence, charge conservation is an accounting relationship between the amount of charge in a region and the flow of charge into and out of that region, given by a continuity equation between charge density and current density .
The Maxwell stress tensor is a symmetric second-order tensor in three dimensions that is used in classical electromagnetism to represent the interaction between electromagnetic forces and mechanical momentum. In simple situations, such as a point charge moving freely in a homogeneous magnetic field, it is easy to calculate the forces on the charge from the Lorentz force law. When the situation becomes more complicated, this ordinary procedure can become impractically difficult, with equations spanning multiple lines. It is therefore convenient to collect many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer to the problem at hand.
In differential calculus, the Reynolds transport theorem, or simply the Reynolds theorem, named after Osborne Reynolds (1842–1912), is a three-dimensional generalization of the Leibniz integral rule. It is used to recast time derivatives of integrated quantities and is useful in formulating the basic equations of continuum mechanics.
The gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve. The theorem is a generalization of the second fundamental theorem of calculus to any curve in a plane or space rather than just the real line.
The derivation of the Navier–Stokes equations as well as their application and formulation for different families of fluids, is an important exercise in fluid dynamics with applications in mechanical engineering, physics, chemistry, heat transfer, and electrical engineering. A proof explaining the properties and bounds of the equations, such as Navier–Stokes existence and smoothness, is one of the important unsolved problems in mathematics.
The Clausius–Duhem inequality is a way of expressing the second law of thermodynamics that is used in continuum mechanics. This inequality is particularly useful in determining whether the constitutive relation of a material is thermodynamically allowable.
Stokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls, or simply the curl theorem, is a theorem in vector calculus on . Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. The classical theorem of Stokes can be stated in one sentence:
{{cite journal}}
: CS1 maint: multiple names: authors list (link)