Prodelphinidin B3

Last updated
Prodelphinidin B3
Prodelphinidin B3.svg
Names
IUPAC name
2-(3,4-dihydroxyphenyl)-8-[3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromen-4-yl]-3,4-dihydro-2H-chromene-3,5,7-triol
Other names
gallocatechin-(4α→8)-catechin
GC-(4,8)-C
Dimer GC-C
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C30H26O13/c31-12-6-17(35)23-22(7-12)42-29(11-4-19(37)26(40)20(38)5-11)27(41)25(23)24-18(36)9-15(33)13-8-21(39)28(43-30(13)24)10-1-2-14(32)16(34)3-10/h1-7,9,21,25,27-29,31-41H,8H2
    Key: ZYDDITZPGFXQSD-UHFFFAOYSA-N
  • C1C(C(OC2=C1C(=CC(=C2C3C(C(OC4=CC(=CC(=C34)O)O)C5=CC(=C(C(=C5)O)O)O)O)O)O)C6=CC(=C(C(=C6))O)O)O
Properties
C30H26O13
Molar mass 594.525 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Prodelphinidin B3 is a prodelphinidin dimer found in food products such as barley [1] [2] and beer, in fruits and pod vegetables. It can also be found in pomegranate peels. [3]

It can also be synthesized. [4]

Related Research Articles

<span class="mw-page-title-main">Flavan-3-ol</span> Category of polyphenol compound

Flavan-3-ols are a subgroup of flavonoids. They are derivatives of flavans that possess a 2-phenyl-3,4-dihydro-2H-chromen-3-ol skeleton. Flavan-3-ols are structurally diverse and include a range of compounds, such as catechin, epicatechin gallate, epigallocatechin, epigallocatechin gallate, proanthocyanidins, theaflavins, thearubigins. They play a part in plant defense and are present in the majority of plants.

<span class="mw-page-title-main">Polyphenol</span> Class of chemical compounds

Polyphenols are a large family of naturally occurring phenols. They are abundant in plants and structurally diverse. Polyphenols include flavonoids, tannic acid, and ellagitannin, some of which have been used historically as dyes and for tanning garments.

<span class="mw-page-title-main">Catechin</span> Type of natural phenol as a plant secondary metabolite

Catechin is a flavan-3-ol, a type of secondary metabolite providing antioxidant roles in plants. It belongs to the subgroup of polyphenols called flavonoids.

<span class="mw-page-title-main">Caffeic acid</span> Chemical compound

Caffeic acid is an organic compound that is classified as a hydroxycinnamic acid. This yellow solid consists of both phenolic and acrylic functional groups. It is found in all plants because it is an intermediate in the biosynthesis of lignin, one of the principal components of woody plant biomass and its residues.

Guaiacol is an organic compound with the formula C6H4(OH)(OCH3). It is a phenolic compound containing a methoxy functional group. Guaiacol appears as a viscous colorless oil, although aged or impure samples are often yellowish. It occurs widely in nature and is a common product of the pyrolysis of wood.

<span class="mw-page-title-main">Sinapinic acid</span> Chemical compound

Sinapinic acid, or sinapic acid (Sinapine - Origin: L. Sinapi, sinapis, mustard, Gr., cf. F. Sinapine.), is a small naturally occurring hydroxycinnamic acid. It is a member of the phenylpropanoid family. It is a commonly used matrix in MALDI mass spectrometry. It is a useful matrix for a wide variety of peptides and proteins. It serves well as a matrix for MALDI due to its ability to absorb laser radiation and to also donate protons (H+) to the analyte of interest.

<i>p</i>-Coumaric acid Chemical compound

p-Coumaric acid is an organic compound with the formula HOC6H4CH=CHCO2H. It is one of the three isomers of hydroxycinnamic acid. It is a white solid that is only slightly soluble in water but very soluble in ethanol and diethyl ether.

Proanthocyanidins are a class of polyphenols found in many plants, such as cranberry, blueberry, and grape seeds. Chemically, they are oligomeric flavonoids. Many are oligomers of catechin and epicatechin and their gallic acid esters. More complex polyphenols, having the same polymeric building block, form the group of tannins.

<span class="mw-page-title-main">Antioxidant effect of polyphenols and natural phenols</span>

A polyphenol antioxidant is a hypothetized type of antioxidant, in which each instance would contain a polyphenolic substructure; such instances which have been studied in vitro. Numbering over 4,000 distinct chemical structures, such polyphenols may have antioxidant activity {{{1}}} in vitro (although they are unlikely to be antioxidants in vivo). Hypothetically, they may affect cell-to-cell signaling, receptor sensitivity, inflammatory enzyme activity or gene regulation, although high-quality clinical research has not confirmed any of these possible effects in humans as of 2020.

Thearubigins are polymeric polyphenols that are formed during the enzymatic oxidation and condensation of two gallocatechins with the participation of polyphenol oxidases during the fermentation reactions in black tea. Thearubigins are red in colour and are responsible for much of the staining effect of tea. Therefore, a black tea often appears red while a green or white tea has a much clearer appearance. The colour of a black tea, however, is affected by many other factors as well, such as the amount of theaflavins, another oxidized form of polyphenols.

<span class="mw-page-title-main">Procyanidin</span>

Procyanidins are members of the proanthocyanidin class of flavonoids. They are oligomeric compounds, formed from catechin and epicatechin molecules. They yield cyanidin when depolymerized under oxidative conditions.

<span class="mw-page-title-main">Phenolic content in wine</span> Wine chemistry

The phenolic content in wine refers to the phenolic compounds—natural phenol and polyphenols—in wine, which include a large group of several hundred chemical compounds that affect the taste, color and mouthfeel of wine. These compounds include phenolic acids, stilbenoids, flavonols, dihydroflavonols, anthocyanins, flavanol monomers (catechins) and flavanol polymers (proanthocyanidins). This large group of natural phenols can be broadly separated into two categories, flavonoids and non-flavonoids. Flavonoids include the anthocyanins and tannins which contribute to the color and mouthfeel of the wine. The non-flavonoids include the stilbenoids such as resveratrol and phenolic acids such as benzoic, caffeic and cinnamic acids.

<span class="mw-page-title-main">Prodelphinidin</span>

Prodelphinidin is a name for the polymeric tannins composed of gallocatechin. It yields delphinidin during depolymerisation under oxidative conditions.

<span class="mw-page-title-main">Procyanidin C2</span> Chemical compound

Procyanidin C2 is a B type proanthocyanidin trimer, a type of condensed tannin.

A type proanthocyanidins are a specific type of proanthocyanidins, which are a class of flavonoid. Proanthocyanidins fall under a wide range of names in the nutritional and scientific vernacular, including oligomeric proanthocyanidins, flavonoids, polyphenols, condensed tannins, and OPCs. Proanthocyanidins were first popularized by French scientist Jacques Masquelier.

<span class="mw-page-title-main">Procyanidin B3</span> Chemical compound

Procyanidin B3 is a B type proanthocyanidin. Procyanidin B3 is a catechin dimer.

<span class="mw-page-title-main">Condensed tannin</span> Polymers formed by the condensation of flavans.

Condensed tannins are polymers formed by the condensation of flavans. They do not contain sugar residues.

<span class="mw-page-title-main">Naturally occurring phenols</span> Group of chemical compounds

In biochemistry, naturally occurring phenols are natural products containing at least one phenol functional group. Phenolic compounds are produced by plants and microorganisms. Organisms sometimes synthesize phenolic compounds in response to ecological pressures such as pathogen and insect attack, UV radiation and wounding. As they are present in food consumed in human diets and in plants used in traditional medicine of several cultures, their role in human health and disease is a subject of research. Some phenols are germicidal and are used in formulating disinfectants.

<span class="mw-page-title-main">Grape reaction product</span> Chemical compound

The grape reaction product is a phenolic compound explaining the disappearance of caftaric acid from grape must during processing. It is also found in aged red wines. Its enzymatic production by polyphenol oxidase is important in limiting the browning of musts, especially in white wine production. The product can be recreated in model solutions.

Catechin-7-<i>O</i>-glucoside Chemical compound

Catechin-7-O-glucoside is a flavan-3-ol glycoside formed from catechin.

References

  1. Klausen, K; Mortensen, AG; Laursen, B; Haselmann, KF; Jespersen, BM; Fomsgaard, IS (2010). "Phenolic compounds in different barley varieties: Identification by tandem mass spectrometry (QStar) and NMR; quantification by liquid chromatography triple quadrupole-linear ion trap mass spectrometry (Q-Trap)". Natural Product Communications. 5 (3): 407–14. doi: 10.1177/1934578X1000500314 . PMID   20420318. S2CID   45699900.
  2. Quinde-Axtell, Zory; Baik, Byung-Kee (2006). "Phenolic Compounds of Barley Grain and Their Implication in Food Product Discoloration". Journal of Agricultural and Food Chemistry. 54 (26): 9978–84. doi:10.1021/jf060974w. PMID   17177530.
  3. Plumb, G. W.; De Pascual-Teresa, S.; Santos-Buelga, C.; Rivas-Gonzalo, J. C.; Williamson, G. (2002). "Antioxidant properties of gallocatechin and prodelphinidins from pomegranate peel". Redox Report. 7 (1): 41–6. doi:10.1179/135100002125000172. PMID   11981454.
  4. Delcour, Jan A.; Vercruysse, Sabine A. R. (1986). "Direct Synthesis of the Barley Proanthocyanidins Prodelphinidin B3, Prodelphinidin C2 and Two Trimeric Proanthocyanidins with a Mixed Prodelphinidin-Procyanidin Stereochemistry". Journal of the Institute of Brewing. 92 (3): 244. doi:10.1002/j.2050-0416.1986.tb04409.x.