Prosthetic joint infection

Last updated
Prosthetic joint infection
Other namesartificial joint infection, Infected joint prosthesis, joint replacement infection
Specialty Infectious disease, microbiology, orthopaedics, rheumatology
Symptoms joint pain, joint swelling, erythema, sinus tract formation, prosthetic loosening, warmth of the joint, fever
Complications Joint replacement failure
DurationMay be acute, subacute or chronic, duration varies from days (acute infection) to many months (chronic infection)
Causes microorganisms (usually bacteria, but also fungi) causing infection of a prosthetic joint
Risk factors smoking, diabetes, immunosuppression, obesity, chronic liver or kidney disease
Diagnostic method Based on culture of microorganism from the affected joint, or other indirect methods such as inflammatory cells detected in joint aspirate
Differential diagnosis Aseptic joint loosening, crystal arthropathy, rheumatoid arthritis
PreventionAntibiotic prophylaxis prior to joint replacement surgery
TreatmentSystemic and local antibiotics, joint replacement revision, debridement
Medication Antibiotics
FrequencyApproximately 2% of hip and knee replacements

Prosthetic joint infection (PJI), also known as peri-prosthetic joint infection, is an acute, sub-acute or chronic infection of a prosthetic joint. It may occur in the period after the joint replacement or many years later. It usually presents as joint pain, erythema (redness of the joint or adjacent area), joint swelling and sometimes formation of a sinus tract ( a tract connecting the joint space to the outer environment). PJI is estimated to occur in approximately 2% of hip and knee replacements, and up to 4% of revision hip or knee replacements. Other estimates indicate that 1.4-2.5% of all joint replacements worldwide are complicated by PJIs. [1] The incidence is expected to rise significantly in the future as hip replacements and knee replacements become more common. It is usually caused by aerobic gram positive bacteria, such as Staph epidermidis or Staphylococcus aureus but enterococcus species, gram negative organisms and Cutibacterium are also known causes with fungal infections being a rare culprit. The definitive diagnosis is isolation of the causative organism from the synovial fluid (joint fluid), but signs of inflammation in the joint fluid and imaging may also aid in the diagnosis. The treatment is a combination of systemic antibiotics, debridement of infectious and necrotic tissue and local antibiotics applied to the joint space. The bacteria that usually cause prosthetic joint infections commonly form a biofilm, or a thick slime that is adherent to the artificial joint surface, thus making treatment challenging.

Contents

Signs and symptoms

The most common symptom of periprosthetic joint infections is joint pain. [2] Other local symptoms are also present, including erythema (redness of the joint), joint swelling, warmth of the joint, and loosening of the prosthetic joint. [2] A sinus tract, or a tract connecting the joint space to the external environment, is more common in chronic PJI, and is definitively diagnostic of PJI. [3] Fever may be present in PJI, but is uncommon. [2]

Cause

Prosthetic joint infections can occur any time after a joint replacement. Early infections (occurring within 4 weeks of a joint replacement) are usually due to Staph aureus, streptococci or enterococci. [4] Whereas late infections (occurring 3 months or later after the joint replacement) are usually due to coagulase negative staphylococcus or cutibacterium. [4] The highest risk of PJI is in the immediate post-operative period, when direct inoculation of bacteria into the joint space may occur during surgery. [4] The risk of PJI is highest in this early period; within 2 years of the joint replacement. [1] Hematogenous spread, or infection of a prosthetic joint via direct seeding from a bloodstream infection, may occur at any time after a joint replacement, with the risk being as high as 34% in staph aureus bacteremia. [4] An additional possible cause of PJI is from direct spread to the joint from a nearby skin or soft tissue infection, a bone infection (osteomyelitis), or from more distal spread to the joint from a respiratory tract infection, gastroenteritis,or urinary tract infection. [4] Dental procedures may cause a transient bacteremia which can lead to inoculation of the artificial joint and PJI, with strep viridans being the most common causative organism. [4]

The most common causes of PJIs are aerobic, gram positive bacteria, including staph aureus and coagulase negative staphylococcus (such as staph epidermidis), which make up greater than 50% of all causes of hip and knee PJIs. [3] With regards to acute PJIs, the most common causative organism is staph aureus (comprising 38% of acute infections) followed by aerobic gram negative bacilli (making up 24% of acute infections). [3] 70% of PJIs are monomicrobial (with a single causative organism identified), whereas 25% of cases are polymicrobial (with multiple causative organisms identified). [2] 3% of PJIs are due to fungal organisms. [2] Propionibacterium acnes is the most common cause of shoulder PJIs. [3]

Risk factors for PJI include diabetes, immunosuppression, smoking, obesity, chronic kidney disease, the presence of a soft tissue infection, or an infection in another part of the body or increased fat tissue around the replaced joint. [1] Surgical factors that may lead to an increased risk of PJIs include wound dehiscence (unplanned opening of the surgical wound after the surgery) and hematoma (collection of blood) formation. [1]

The presence of multiple artificial joints, MRSA PJIs, rheumatoid arthritis or bacteremia place people at risk for multiple PJIs (either concurrent or subsequent infections). [2]

Prolonged operative times, in which the joint is left open to the external environment, determined as greater than 90 minutes in a single study, also increases the risk for PJIs. [2]

Pathophysiology

Prosthetic joint infections are generally difficult to treat as most causative organisms form a biofilm, or a thickly adherent membrane, against the artificial joint surface. The bacteria secrete adhesion proteins which help them attach to each other and to the joint surface. [1] The bacteria then secrete autoinducer proteins that act as bacterial signals which facilitate the secretion of an intricate extracellular matrix, the biofilm. [1] Biofilms greatly decrease antibiotic penetrance thereby shielding bacteria from the bacteriocidal effects of antibiotics. [2] [1] Biofilms usually take 4 weeks to fully mature. [4] Granulocytes have decreased phagocytic activity encountering the biofilm, also allowing the bacteria to persist. [2]

Diagnosis

The presence of a PJI is confirmed when one of the proposed major diagnostic criteria are met: [4]

Polymerase chain reaction testing of the joint fluid or sonification fluid may aid in the diagnosis. [4]

Skin swabs, sinus tract swabs, swabbing of the artificial joint surface during surgery is not recommended due to the high risk of contaminants and low diagnostic yield (including the risk of contaminants rather than the pathologic organism being cultured). [4] [2]

Blood cultures are positive in approximately 25% of cases of PJIs, especially in acute PJI, however, the organism isolated from blood culture does not always correlate to the organisms isolated from the joint fluid, and therefore blood cultures are not diagnostic of PJIs. [2]

Routine blood work attempting to identify infection including elevated white blood cells on a complete blood count, elevated inflammatory markers (erythrocyte sedimentation rate and C-reactive protein) or procalcitonin are not sensitive nor specific in diagnosis PJIs. [4]

Plain radiography (X-ray) has a low sensitivity and specificity for diagnosing PJI but it may show radiolucent lines around the prosthetic joint, bone breakdown, loosening or migration of the prosthetic joint. [2] [4] Functional imaging tests such as white blood cell Scintigraphy or PET scan may help to identify hypermetabolic areas consistent with infection and aid with the diagnosis. [4]

Magnetic resonance imaging is specific to soft tissue infections, with metal artifact reduction sequence (MARS) MRIs having great utility to aid in the diagnosis of PJIs. [4]

Treatment

Antibiotic treatment alone, without surgical debridement, usually results in treatment failure. [2] Acute infections (in which the biofilm is thought to be immature) are usually treated using the DAIR technique; debridement, systemic and local antibiotics, and implant retention (the implant is not removed). [4] [2] However, the mobile, easily interchangeable components of the implant are often replaced in the DAIR approach. [4] DAIR is contraindicated if there is a sinus tract, loosening of the prosthesis, or the surgical wound cannot be closed. [2] The microbial cure rate of DAIR is 74%, 49% and 44% in early, sub-acute and late infections respectively. [2]

Antibiotic loaded polymethylmethacrylate (PMMA) which are placed in the joint are helpful, however these non-resorbable beads may themselves be colonized by bacteria with an associated biofilm, therefore bio-absorbable local antibiotic carriers (calcium sulfate beads, resorbable gentamicin sponges) are preferred. [4]

Chronic PJIs may be treated using 1 stage revisions, where the artificial joint is replaced with a new one during the same surgical procedure, or with a 2-stage revision; in which the infected joint is removed and an antibiotic spacer is placed, this is followed by a second surgery in which a new artificial joint is placed. [4] Two step revisions are associated with increased morbidity, longer hospital stays, longer immobilization time, worse functional outcomes and higher costs. [4] Therefore, for intact, or mostly intact bone and soft tissue, and without a history of joint replacement revisions; a 1 step exchange is the treatment of choice. [4] In the case of hip PJIs both kinds of surgery are equally effective but one-stage surgery results in faster recovery. [5] [6] [7]

Negative pressure wound therapy is not recommended as the sponges used are often themselves colonized by the biofilm or by new organisms from the environment (including multi-drug resistant organisms). [4]

An extended course of antibiotics is required in PJIs, usually 6–12 weeks of antibiotic therapy. [2] [4] Intravenous antibiotics are initially used and then transitioned to oral antibiotics. A strategy of surgical debridement to decrease the bacterial load prior to starting systemic antibiotics is sometimes employed. [4] Common practice involves switching to oral antibiotics after 14 days. [4] Intravenous ampicillin-sulbactam or amoxicillin with clavulanic acid with vancomycin added in cases of MRSA is a commonly employed empiric antibiotic treatment strategy. [4]

If surgery fails or the PJI persists despite optimal antibiotic therapy, resection arthroplasty of the hip with a pseudarthrosis (Femoral head ostectomy) is sometimes done. [2] Or in cases of knee PJIs failing treatment; an arthrodesis (artificial induction of ossification of the knee joint) is done. [2] These are considered last line therapies due to significant disability. [2]

Prevention

Antibiotic prophylaxis, or giving small doses of antibiotics as a preventative measure, during the perioperative period (usually less than 60 minutes prior to the start of joint replacements)(usually using second generation cephalosporins) is believed to reduce the risk of acute PJIs. [2] [1]

Screening for and eradication of MRSA carriage and chlorhexidine wipes or soap and water skin cleansing prior to surgery may possibly decrease the risk of PJIs. [2]

According the American Dental Association: in patients with prosthetic joint implants, prophylactic antibiotics prior to routine dental procedures are generally not recommended in the prevention of PJI. However specific circumstances placing patients at higher risk, as determined by the dentist or other physicians, may warrant antibiotic prophylaxis. [8]

Prognosis

The 5-year mortality after hip PJIs is 21%, which is 4 times that of age adjusted controls. [2] And the 10 year mortality after hip PJIs was 45%, as compared to 29% in people with non-infected hip replacements. [2] 25% of people with PJIs have an unplanned re-operation within 1 year of PJI treatment. [2] Hospital stays are longer in those with knee and hip PJIs as compared to un-infected knee and hip replacement controls; at 5.3 vs 3 days (knee) and 7.6 vs 3.3 days (hip). [2]

Epidemiology

PJIs are the most common cause of knee replacement failures, and the third most common cause of hip replacement failures. [1] As of 2017, 2.1% of hip and 2.3% of knee replacements will at some time develop a PJI. [2] The incidence of PJIs have more than tripled in the last 20 years, with the incidence expected to further increase in the future. This increase is believed to be due to the much greater number of hip and knee arthroplasties being performed presently. [2]

Related Research Articles

<span class="mw-page-title-main">Abscess</span> Localized collection of pus that has built up within the tissue of the body

An abscess is a collection of pus that has built up within the tissue of the body. Signs and symptoms of abscesses include redness, pain, warmth, and swelling. The swelling may feel fluid-filled when pressed. The area of redness often extends beyond the swelling. Carbuncles and boils are types of abscess that often involve hair follicles, with carbuncles being larger. A cyst is related to an abscess, but it contains a material other than pus, and a cyst has a clearly defined wall. Abscesses can also form internally on internal organs and after surgery.

<span class="mw-page-title-main">Lemierre's syndrome</span> Medical condition

Lemierre's syndrome is infectious thrombophlebitis of the internal jugular vein. It most often develops as a complication of a bacterial sore throat infection in young, otherwise healthy adults. The thrombophlebitis is a serious condition and may lead to further systemic complications such as bacteria in the blood or septic emboli.

<i>Staphylococcus aureus</i> Species of gram-positive bacterium

Staphylococcus aureus is a gram-positive spherically shaped bacterium, a member of the Bacillota, and is a usual member of the microbiota of the body, frequently found in the upper respiratory tract and on the skin. It is often positive for catalase and nitrate reduction and is a facultative anaerobe, meaning that it can grow without oxygen. Although S. aureus usually acts as a commensal of the human microbiota, it can also become an opportunistic pathogen, being a common cause of skin infections including abscesses, respiratory infections such as sinusitis, and food poisoning. Pathogenic strains often promote infections by producing virulence factors such as potent protein toxins, and the expression of a cell-surface protein that binds and inactivates antibodies. S. aureus is one of the leading pathogens for deaths associated with antimicrobial resistance and the emergence of antibiotic-resistant strains, such as methicillin-resistant S. aureus (MRSA). The bacterium is a worldwide problem in clinical medicine. Despite much research and development, no vaccine for S. aureus has been approved.

<span class="mw-page-title-main">Tenosynovitis</span> Inflammation of the fluid sheath (synovium) around a tendon

Tenosynovitis is the inflammation of the fluid-filled sheath that surrounds a tendon, typically leading to joint pain, swelling, and stiffness. Tenosynovitis can be either infectious or noninfectious. Common clinical manifestations of noninfectious tenosynovitis include de Quervain tendinopathy and stenosing tenosynovitis.

<span class="mw-page-title-main">Necrotizing fasciitis</span> Infection that results in the death of the bodys soft tissue

Necrotizing fasciitis (NF), also known as flesh-eating disease, is a bacterial infection that results in the death of parts of the body's soft tissue. It is a severe disease of sudden onset that spreads rapidly. Symptoms usually include red or purple skin in the affected area, severe pain, fever, and vomiting. The most commonly affected areas are the limbs and perineum.

Bloodstream infections (BSIs) are infections of blood caused by blood-borne pathogens. The detection of microbes in the blood is always abnormal. A bloodstream infection is different from sepsis, which is characterized by severe inflammatory or immune responses of the host organism to pathogens.

<span class="mw-page-title-main">Septic arthritis</span> Inflammation of a joint due to infection

Acute septic arthritis, infectious arthritis, suppurative arthritis, pyogenic arthritis, osteomyelitis, or joint infection is the invasion of a joint by an infectious agent resulting in joint inflammation. Generally speaking, symptoms typically include redness, heat and pain in a single joint associated with a decreased ability to move the joint. Onset is usually rapid. Other symptoms may include fever, weakness and headache. Occasionally, more than one joint may be involved, especially in neonates, younger children and immunocompromised individuals. In neonates, infants during the first year of life, and toddlers, the signs and symptoms of septic arthritis can be deceptive and mimic other infectious and non-infectious disorders.

<span class="mw-page-title-main">Infective endocarditis</span> Infection of the hearts inner surface (endocardium)

Infective endocarditis is an infection of the inner surface of the heart (endocardium), usually the valves. Signs and symptoms may include fever, small areas of bleeding into the skin, heart murmur, feeling tired, and low red blood cell count. Complications may include backward blood flow in the heart, heart failure – the heart struggling to pump a sufficient amount of blood to meet the body's needs, abnormal electrical conduction in the heart, stroke, and kidney failure.

<span class="mw-page-title-main">Osteomyelitis</span> Infection of the bones

Osteomyelitis (OM) is an infection of bone. Symptoms may include pain in a specific bone with overlying redness, fever, and weakness. The feet, spine, and hips are the most commonly involved bones in adults.

<span class="mw-page-title-main">Bacterial pneumonia</span> Disease of the lungs

Bacterial pneumonia is a type of pneumonia caused by bacterial infection.

<span class="mw-page-title-main">Boil</span> Medical condition (infection)

A boil, also called a furuncle, is a deep folliculitis, which is an infection of the hair follicle. It is most commonly caused by infection by the bacterium Staphylococcus aureus, resulting in a painful swollen area on the skin caused by an accumulation of pus and dead tissue. Boils are therefore basically pus-filled nodules. Individual boils clustered together are called carbuncles. Most human infections are caused by coagulase-positive S. aureus strains, notable for the bacteria's ability to produce coagulase, an enzyme that can clot blood. Almost any organ system can be infected by S. aureus.

Staphylococcus lugdunensis is a coagulase-negative member of the genus Staphylococcus, consisting of Gram-positive bacteria with spherical cells that appear in clusters.

<span class="mw-page-title-main">Mastoiditis</span> Middle ear disease

Mastoiditis is the result of an infection that extends to the air cells of the skull behind the ear. Specifically, it is an inflammation of the mucosal lining of the mastoid antrum and mastoid air cell system inside the mastoid process. The mastoid process is the portion of the temporal bone of the skull that is behind the ear. The mastoid process contains open, air-containing spaces. Mastoiditis is usually caused by untreated acute otitis media and used to be a leading cause of child mortality. With the development of antibiotics, however, mastoiditis has become quite rare in developed countries where surgical treatment is now much less frequent and more conservative, unlike former times.

Knee replacement, also known as knee arthroplasty, is a surgical procedure to replace the weight-bearing surfaces of the knee joint to relieve pain and disability, most commonly offered when joint pain is not diminished by conservative sources. It may also be performed for other knee diseases, such as rheumatoid arthritis. In patients with severe deformity from advanced rheumatoid arthritis, trauma, or long-standing osteoarthritis, the surgery may be more complicated and carry higher risk. Osteoporosis does not typically cause knee pain, deformity, or inflammation, and is not a reason to perform knee replacement.

<span class="mw-page-title-main">Sultamicillin</span> Chemical compound

Sultamicillin, sold under the brand name Unasyn among others, is an oral form of the penicillin antibiotic combination ampicillin/sulbactam. It is used for the treatment of bacterial infections of the upper and lower respiratory tract, the kidneys and urinary tract, skin and soft tissues, among other organs. It contains esterified ampicillin and sulbactam.

<i>Peptostreptococcus</i> Genus of bacteria

Peptostreptococcus is a genus of anaerobic, Gram-positive, non-spore forming bacteria. The cells are small, spherical, and can occur in short chains, in pairs or individually. They typically move using cilia. Peptostreptococcus are slow-growing bacteria with increasing resistance to antimicrobial drugs. Peptostreptococcus is a normal inhabitant of the healthy lower reproductive tract of women.

An open fracture, also called a compound fracture, is a type of bone fracture that has an open wound in the skin near the fractured bone. The skin wound is usually caused by the bone breaking through the surface of the skin. An open fracture can be life threatening or limb-threatening due to the risk of a deep infection and/or bleeding. Open fractures are often caused by high energy trauma such as road traffic accidents and are associated with a high degree of damage to the bone and nearby soft tissue. Other potential complications include nerve damage or impaired bone healing, including malunion or nonunion. The severity of open fractures can vary. For diagnosing and classifying open fractures, Gustilo-Anderson open fracture classification is the most commonly used method. This classification system can also be used to guide treatment, and to predict clinical outcomes. Advanced trauma life support is the first line of action in dealing with open fractures and to rule out other life-threatening condition in cases of trauma. The person is also administered antibiotics for at least 24 hours to reduce the risk of an infection.

<span class="mw-page-title-main">Staphylococcal infection</span> Bacterial infection (genus Staphylococcus)

A staphylococcal infection or staph infection is an infection caused by members of the Staphylococcus genus of bacteria.

Acute infectious thyroiditis (AIT) also known as suppurative thyroiditis, microbial inflammatory thyroiditis, pyrogenic thyroiditis and bacterial thyroiditis.

<i>Staphylococcus capitis</i> Species of bacterium

Staphylococcus capitis is a coagulase-negative species (CoNS) of Staphylococcus. It is part of the normal flora of the skin of the human scalp, face, neck, scrotum, and ears and has been associated with prosthetic valve endocarditis, but is rarely associated with native valve infection.

References

  1. 1 2 3 4 5 6 7 8 9 Zardi, Enrico Maria; Franceschi, Francesco (1 December 2020). "Prosthetic joint infection. A relevant public health issue". Journal of Infection and Public Health. 13 (12): 1888–1891. doi: 10.1016/j.jiph.2020.09.006 . PMID   33289642. S2CID   226330424.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Patel, Robin (19 January 2023). "Periprosthetic Joint Infection". New England Journal of Medicine. 388 (3): 251–262. doi:10.1056/NEJMra2203477. PMID   36652356. S2CID   255972293.
  3. 1 2 3 4 Tande, Aaron J.; Patel, Robin (April 2014). "Prosthetic Joint Infection". Clinical Microbiology Reviews. 27 (2): 302–345. doi:10.1128/CMR.00111-13. PMC   3993098 . PMID   24696437.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Izakovicova, Petra; Borens, Olivier; Trampuz, Andrej (July 2019). "Periprosthetic joint infection: current concepts and outlook". EFORT Open Reviews. 4 (7): 482–494. doi:10.1302/2058-5241.4.180092. PMC   6667982 . PMID   31423332.
  5. Moore, Andrew J.; Wylde, Vikki; Whitehouse, Michael R.; Beswick, Andrew D.; Walsh, Nicola E.; Jameson, Catherine; Blom, Ashley W. (2023-04-01). "Development of evidence-based guidelines for the treatment and management of periprosthetic hip infection: the INFORM guidelines". Bone & Joint Open. 4 (4): 226–233. doi:10.1302/2633-1462.44.BJO-2022-0155.R1. ISSN   2633-1462. PMC   10065846 . PMID   37051823.
  6. "Improving services for people with infection after hip replacement: fewer operations, less delays, holistic care". University of Bristol. April 2024. Retrieved 2024-12-09.
  7. "Is surgery the best option? Research provides alternatives". NIHR Evidence (Plain English summary). National Institute for Health and Care Research. 21 November 2024. doi:10.3310/nihrevidence_65060.
  8. Sollecito, Thomas P.; Abt, Elliot; Lockhart, Peter B.; Truelove, Edmond; Paumier, Thomas M.; Tracy, Sharon L.; Tampi, Malavika; Beltrán-Aguilar, Eugenio D.; Frantsve-Hawley, Julie (January 2015). "The use of prophylactic antibiotics prior to dental procedures in patients with prosthetic joints". The Journal of the American Dental Association. 146 (1): 11–16.e8. doi: 10.1016/j.adaj.2014.11.012 . PMID   25569493.