A provider-provisioned VPN (PPVPN) is a virtual private network (VPN) implemented by a connectivity service provider or large enterprise on a network they operate on their own, as opposed to a "customer-provisioned VPN" where the VPN is implemented by the customer who acquires the connectivity service on top of the technical specificities of the provider.
When internet service providers implement PPVPNs on their own networks, the security model of typical PPVPN protocols is weaker with respect to tunneling protocols used in customer-provided VPN, especially for confidentiality, because data privacy may not be needed.
Depending on whether a provider-provisioned VPN (PPVPN) operates in Layer 2 (L2) or Layer 3 (L3), the building blocks described below may be L2 only, L3 only, or a combination of both. Multiprotocol Label Switching (MPLS) functionality blurs the L2–L3 identity. [1] [ original research? ]
RFC 4026 generalized the following terms to cover L2 MPLS VPNs and L3 (BGP) VPNs, but they were introduced in RFC 2547. [2] [3]
VLAN is a Layer 2 technique that allows for the coexistence of multiple local area network (LAN) broadcast domains interconnected via trunks using the IEEE 802.1Q trunking protocol. Other trunking protocols have been used but have become obsolete, including Inter-Switch Link (ISL), IEEE 802.10 (originally a security protocol but a subset was introduced for trunking), and ATM LAN Emulation (LANE).
Developed by Institute of Electrical and Electronics Engineers, VLANs allow multiple tagged LANs to share common trunking. VLANs frequently comprise only customer-owned facilities. Whereas VPLS as described in the above section (OSI Layer 1 services) supports emulation of both point-to-point and point-to-multipoint topologies, the method discussed here extends Layer 2 technologies such as 802.1d and 802.1q LAN trunking to run over transports such as metro Ethernet.
As used in this context, a VPLS is a Layer 2 PPVPN, emulating the full functionality of a traditional LAN. From a user standpoint, a VPLS makes it possible to interconnect several LAN segments in a way that is transparent to the user, making the separate LAN segments behave as one single LAN. [4]
In a VPLS, the provider network emulates a learning bridge, which may include VLAN service optionally.
PW is similar to VPLS but can provide different L2 protocols at both ends. Typically, its interface is a WAN protocol such as Asynchronous Transfer Mode or Frame Relay. In contrast, when aiming to provide the appearance of a LAN contiguous between two or more locations, the Virtual Private LAN service or IPLS would be appropriate.
EtherIP ( RFC 3378) [5] is an Ethernet-over-IP tunneling protocol specification. EtherIP has only a packet encapsulation mechanism. It has no confidentiality or message integrity protection. EtherIP was introduced in the FreeBSD network stack [6] and the SoftEther VPN [7] server program.
A subset of VPLS, the CE devices must have Layer 3 capabilities; the IPLS presents packets rather than frames. It may support IPv4 or IPv6.
Ethernet VPN (EVPN) is an advanced solution for providing Ethernet services over IP-MPLS networks. In contrast to the VPLS architectures, EVPN enables control-plane-based MAC (and MAC,IP) learning in the network. PEs participating in the EVPN instances learn the customer's MAC (MAC,IP) routes in control-plane using MP-BGP protocol. Control-plane MAC learning brings a number of benefits that allow EVPN to address the VPLS shortcomings, including support for multi-homing with per-flow load balancing and avoidance of unnecessary flooding over the MPLS core network to multiple PEs participating in the P2MP/MP2MP L2VPN (in the occurrence, for instance, of ARP query). It is defined RFC 7432.
This section discusses the main architectures for PPVPNs, one where the PE disambiguates duplicate addresses in a single routing instance, and the other, virtual router, in which the PE contains a virtual router instance per VPN. The former approach, and its variants, have gained the most attention.
One of the challenges of PPVPNs involves different customers using the same address space, especially the IPv4 private address space. [8] The provider must be able to disambiguate overlapping addresses in the multiple customers' PPVPNs.
PEs understand the topology of each VPN, which is interconnected with MPLS tunnels directly or via P routers. In MPLS terminology, the P routers are label switch routers without awareness of VPNs.[ citation needed ]
Some virtual networks use tunneling protocols without encryption to protect the privacy of data. While VPNs often provide security, an unencrypted overlay network does not fit within the secure or trusted categorization. [11] For example, a tunnel set up between two hosts with Generic Routing Encapsulation (GRE) is a virtual private network but is neither secure nor trusted. [12] [13]
Native plaintext tunneling protocols include Layer 2 Tunneling Protocol (L2TP) when it is set up without IPsec and Point-to-Point Tunneling Protocol (PPTP) or Microsoft Point-to-Point Encryption (MPPE). [14]
Multiprotocol Label Switching (MPLS) is a routing technique in telecommunications networks that directs data from one node to the next based on labels rather than network addresses. Whereas network addresses identify endpoints, the labels identify established paths between endpoints. MPLS can encapsulate packets of various network protocols, hence the multiprotocol component of the name. MPLS supports a range of access technologies, including T1/E1, ATM, Frame Relay, and DSL.
A router is a computer and networking device that forwards data packets between computer networks, including internetworks such as the global Internet.
Open Shortest Path First (OSPF) is a routing protocol for Internet Protocol (IP) networks. It uses a link state routing (LSR) algorithm and falls into the group of interior gateway protocols (IGPs), operating within a single autonomous system (AS).
The Address Resolution Protocol (ARP) is a communication protocol used for discovering the link layer address, such as a MAC address, associated with a given internet layer address, typically an IPv4 address. This mapping is a critical function in the Internet protocol suite. ARP was defined in 1982 by RFC 826, which is Internet Standard STD 37.
Proxy ARP is a technique by which a proxy server on a given network answers the Address Resolution Protocol (ARP) queries for an IP address that is not on that network. The proxy is aware of the location of the traffic's destination and offers its own MAC address as the destination. The traffic directed to the proxy address is then typically routed by the proxy to the intended destination via another interface or via a tunnel.
Virtual private network (VPN) is a network architecture for virtually extending a private network across one or multiple other networks which are either untrusted or need to be isolated.
A route distinguisher is an address qualifier used only within a single internet service provider's Multiprotocol Label Switching (MPLS) network. It is used to distinguish the distinct virtual private network (VPN) routes of separate customers who connect to the provider.
MPLS VPN is a family of methods for using Multiprotocol Label Switching (MPLS) to create virtual private networks (VPNs). MPLS VPN is a flexible method to transport and route several types of network traffic using an MPLS backbone.
Virtual Private LAN Service (VPLS) is a way to provide Ethernet-based multipoint to multipoint communication over IP or MPLS networks. It allows geographically dispersed sites to share an Ethernet broadcast domain by connecting sites through pseudowires. The term sites includes multiplicities of both servers and clients. The technologies that can be used as pseudo-wire can be Ethernet over MPLS, L2TPv3 or even GRE. There are two IETF standards-track RFCs describing VPLS establishment.
In IP-based computer networks, virtual routing and forwarding (VRF) is a technology that allows multiple instances of a routing table to co-exist within the same router at the same time. One or more logical or physical interfaces may have a VRF and these VRFs do not share routes. Therefore, the packets are only forwarded between interfaces on the same VRF. VRFs are the TCP/IP layer 3 equivalent of a VLAN. Because the routing instances are independent, the same or overlapping IP addresses can be used without conflicting with each other. Network functionality is improved because network paths can be segmented without requiring multiple routers.
Multiprotocol Extensions for BGP, sometimes referred to as Multiprotocol BGP or Multicast BGP and defined in IETF RFC 4760, is an extension to Border Gateway Protocol (BGP) that allows different types of addresses to be distributed in parallel. Whereas standard BGP supports only IPv4 unicast addresses, Multiprotocol BGP supports IPv4 and IPv6 addresses and it supports unicast and multicast variants of each. Multiprotocol BGP allows information about the topology of IP multicast-capable routers to be exchanged separately from the topology of normal IPv4 unicast routers. Thus, it allows a multicast routing topology different from the unicast routing topology. Although MBGP enables the exchange of inter-domain multicast routing information, other protocols such as the Protocol Independent Multicast family are needed to build trees and forward multicast traffic.
A Layer 2 MPLS VPN is a term in computer networking. It is a method that Internet service providers use to segregate their network for their customers, to allow them to transmit data over an IP network. This is often sold as a service to businesses.
In computer networking, TUN and TAP are kernel virtual network devices. Being network devices supported entirely in software, they differ from ordinary network devices which are backed by physical network adapters.
The customer edge router (CE) generally refers to the router at the customer premises that is interconnected with the provider edge router of a service provider's IP/MPLS network.
Carrier Ethernet is a marketing term for extensions to Ethernet for communications service providers that utilize Ethernet technology in their networks.
IEEE 802.1ad is an amendment to the IEEE 802.1Q-1998 networking standard which adds support for provider bridges. It was incorporated into the base 802.1Q standard in 2011. The technique specified by the standard is known informally as stacked VLANs or QinQ.
TRILL is a networking protocol for optimizing bandwidth and resilience in Ethernet networks, implemented by devices called TRILL switches. TRILL combines techniques from bridging and routing, and is the application of link-state routing to the VLAN-aware customer-bridging problem. Routing bridges (RBridges) are compatible with, and can incrementally replace, previous IEEE 802.1 customer bridges. TRILL Switches are also compatible with IPv4 and IPv6, routers and end systems. They are invisible to current IP routers, and like conventional routers, RBridges terminate the broadcast, unknown-unicast and multicast traffic of DIX Ethernet and the frames of IEEE 802.2 LLC including the bridge protocol data units of the Spanning Tree Protocol.
Virtual Extensible LAN (VXLAN) is a network virtualization technology that uses a VLAN-like encapsulation technique to encapsulate OSI layer 2 Ethernet frames within layer 4 UDP datagrams, using 4789 as the default IANA-assigned destination UDP port number, although many implementations that predate the IANA assignment use port 8472. VXLAN attempts to address the scalability problems associated with large cloud computing deployments. VXLAN endpoints, which terminate VXLAN tunnels and may be either virtual or physical switch ports, are known as VXLAN tunnel endpoints (VTEPs).
Broadcast, unknown-unicast and multicast traffic is network traffic transmitted using one of three methods of sending data link layer network traffic to a destination of which the sender does not know the network address. This is achieved by sending the network traffic to multiple destinations on an Ethernet network. As a concept related to computer networking, it includes three types of Ethernet modes: broadcast, unicast and multicast Ethernet. BUM traffic refers to that kind of network traffic that will be forwarded to multiple destinations or that cannot be addressed to the intended destination only.
Ethernet VPN (EVPN) is a technology for carrying layer 2 Ethernet traffic as a virtual private network using wide area network protocols. EVPN technologies include Ethernet over MPLS and Ethernet over VXLAN.