Virtual Private LAN Service

Last updated

Virtual Private LAN Service (VPLS) is a way to provide Ethernet-based multipoint to multipoint communication over IP or MPLS networks. It allows geographically dispersed sites to share an Ethernet broadcast domain by connecting sites through pseudowires. The term sites includes multiplicities of both servers and clients. The technologies that can be used as pseudo-wire can be Ethernet over MPLS, L2TPv3 or even GRE. There are two IETF standards-track RFCs (RFC 4761 [1] and RFC 4762) [2] describing VPLS establishment.

Contents

VPLS is a virtual private network (VPN) technology. In contrast to L2TPv3, which allows only point-to-point layer 2 tunnels, VPLS allows any-to-any (multipoint) connectivity.

In a VPLS, the local area network (LAN) at each site is extended to the edge of the provider network. The provider network then emulates a switch or bridge to connect all of the customer LANs to create a single bridged LAN.

VPLS is designed for applications that require multipoint or broadcast access.

Mesh establishment

Since VPLS emulates a LAN, full mesh connectivity is required. There are two methods for full mesh establishment for VPLS: using Border Gateway Protocol (BGP) and using Label Distribution Protocol (LDP). The "control plane" is the means by which provider edge (PE) routers communicate for auto-discovery and signalling. Auto-discovery refers to the process of finding other PE routers participating in the same VPN or VPLS. Signalling is the process of establishing pseudowires (PW). The PWs constitute the "data plane", whereby PEs send customer VPN/VPLS traffic to other PEs.

BGP provides both auto-discovery and signalling. The mechanisms used are very similar to those used in establishing Layer-3 MPLS VPNs. Each PE is configured to participate in a given VPLS. The PE, through the use of BGP, simultaneously discovers all other PEs in the same VPLS, and establishes a full mesh of pseudowires to those PEs.

With LDP, each PE router must be configured to participate in a given VPLS, and, in addition, be given the addresses of other PEs participating in the same VPLS. A full mesh of LDP sessions is then established between these PEs. LDP is then used to create an equivalent mesh of PWs between those PEs.

An advantage to using PWs as the underlying technology for the data plane is that in the event of failure, traffic will automatically be routed along available backup paths in the service provider's network. Failover will be much faster than could be achieved with e.g. Spanning Tree Protocol (STP). VPLS is thus a more reliable solution for linking together Ethernet networks in different locations than simply connecting a WAN link to Ethernet switches in both locations.

VPLS has significant advantages for both service providers and customers. Service providers benefit because they can generate additional revenues by offering a new Ethernet service with flexible bandwidth and sophisticated service level agreements (SLAs). VPLS is also simpler and more cost-effective to operate than a traditional service. Customers benefit because they can connect all of their sites to an Ethernet VPN that provides a secure, high speed and homogenous network. Moreover, VPLS provides a logical next step in the continuing evolution of Ethernet from a 10 Mbit/s shared LAN protocol to a multi-Gbps global service.

Label stack

VPLS MPLS packets have a two-label stack. The outer label is used for normal MPLS forwarding in the service provider's network. If BGP is used to establish the VPLS, the inner label is allocated by a PE as part of a label block. If LDP is used, the inner label is a virtual circuit ID assigned by LDP when it first established a mesh between the participating PEs. Every PE keeps track of assigned inner label, and associates these with the VPLS instance.

Ethernet emulation

PEs participating in a VPLS-based VPN must appear as an Ethernet bridge to connected customer edge (CE) devices. Received Ethernet frames must be treated in such a way as to ensure CEs can be simple Ethernet devices.

When a PE receives a frame from a CE, it inspects the frame and learns the CE's MAC address, storing it locally along with LSP routing information. It then checks the frame's destination MAC address. If it is a broadcast frame, or the MAC address is not known to the PE, it floods the frame to all PEs in the mesh.

Ethernet does not have a time to live (TTL) field in its frame header, so loop avoidance must be arranged by other means. In regular Ethernet deployments, Spanning Tree Protocol is used for this. In VPLS, loop avoidance is arranged by the following rule: A PE never forwards a frame received from a PE to another PE. The use of a full mesh combined with split horizon forwarding guarantees a loop-free broadcast domain.

Scalability

VPLS is typically used to link a large number of sites together. Therefore, scalability is an important issue that needs addressing.

Hierarchical VPLS

VPLS requires a full mesh in both the control and data planes; this can be difficult to scale. For BGP, the control plane scaling issue has long been addressed, through the use of route reflectors (RRs). RRs are extensively used in the context of Internet routing, as well as for several types of VPNs. To scale the data plane for multicast and broadcast traffic, there is work in progress to use point-to-multipoint LSPs as the underlying transport.

For LDP, a method of subdividing a VPLS VPN into two or three tiered hierarchical networks was developed. Called hierarchical VPLS (HVPLS), it introduces a new type of MPLS device: the multi-tenant unit (MTU) switch. This switch aggregates multiple customers into a single PE, which in turn needs only one control and data plane connection into the mesh. This can significantly reduce the number of LDP sessions and LSPs, and thus unburden the core network, by concentrating customers in edge devices.

HVPLS (LDP) may also be used to join two VPLS mesh structures together. Without using HVPLS, every node in each VPLS mesh must become meshed with all nodes in the other VPLS mesh. However, with HVPLS, the two meshes can essentially be joined together at certain locations. Techniques such as redundant pseudowires can provide resiliency in case of failures at the interconnection points.

MAC addresses

Since VPLS links multiple Ethernet broadcast domains together, it effectively creates a much larger broadcast domain. Since every PE must keep track of all MAC addresses and associated LSP routing information, this can potentially result in a large amount of memory being needed in every PE in the mesh.

To counter this problem, sites may use a router as the CE device. This hides all MAC addresses on that site behind the CE's MAC address.

PE devices may also be equipped with content-addressable memory (CAM), similar to high-end Ethernet switches.

An alternative mechanism is using MAT (MAC Address Translation). [3] However, at the time of writing this, there are no vendors providing MAT functionality.

PE auto-discovery

In a VPLS-based VPN with a large number of sites, manually configuring every participating PE does not scale well. If a new PE is taken into service, every existing PE needs to have its configuration adjusted to establish an LDP session with the new PE. Standardisation work is in progress to enable auto-discovery of participating PEs. Three implementations are being worked on:

LDP

The LDP method of PE auto-discovery is based on that used by the Label Distribution Protocol to distribute labels across P and PE routers within a single autonomous system.

BGP

The BGP method of PE auto-discovery is based on that used by Layer-3 MPLS VPNs to distribute VPN routes among PEs participating in a VPN. The BGP4 Multi-Protocol (BGP-MP) extensions are used to distribute VPN IDs and VPN-specific reachability information. Since IBGP requires either a full mesh of BGP sessions or the use of a route reflector, enabling the VPN ID in a participating PEs existing BGP configuration provides it with a list of all PEs in that VPN. Note that this method is for auto-discovery alone; LDP is still used for signaling. The method of establishing VPLS with BGP described above accomplishes both auto-discovery and signalling.

RADIUS

This method requires all PEs to be configured with one or more RADIUS servers to use. When the first CE router in a particular VPLS VPN connects to the PE, it uses the CE's identification to request authentication from the RADIUS server. This identification may be provided by the CE or may be configured into the PE for that particular CE. In addition to a username and password, the identification string also contains a VPN name and an optional provider name.

The RADIUS server keeps track of all PEs that requested authentication for a particular VPN and returns a list of them to the PE requesting authentication. The PE then establishes LDP sessions to every PE in the list.

See also

Related Research Articles

Multiprotocol Label Switching (MPLS) is a routing technique in telecommunications networks that directs data from one node to the next based on labels rather than network addresses. Whereas network addresses identify endpoints, the labels identify established paths between endpoints. MPLS can encapsulate packets of various network protocols, hence the multiprotocol component of the name. MPLS supports a range of access technologies, including T1/E1, ATM, Frame Relay, and DSL.

<span class="mw-page-title-main">Router (computing)</span> Device that forwards data packets between computer networks

A router is a computer and networking device that forwards data packets between computer networks, including internetworks such as the global Internet.

Open Shortest Path First (OSPF) is a routing protocol for Internet Protocol (IP) networks. It uses a link state routing (LSR) algorithm and falls into the group of interior gateway protocols (IGPs), operating within a single autonomous system (AS).

A virtual private network (VPN) is a mechanism for creating a secure connection between a computing device and a computer network, or between two networks, using an insecure communication medium such as the public Internet.

A route distinguisher is an address qualifier used only within a single internet service provider's Multiprotocol Label Switching (MPLS) network. It is used to distinguish the distinct virtual private network (VPN) routes of separate customers who connect to the provider.

Label Distribution Protocol (LDP) is a protocol in which routers capable of Multiprotocol Label Switching (MPLS) exchange label mapping information. Two routers with an established session are called LDP peers and the exchange of information is bi-directional. LDP is used to build and maintain label-switched path (LSP) databases that are used to forward traffic through MPLS networks.

In computer networking and telecommunications, a pseudowire is an emulation of a point-to-point connection over a packet-switched network (PSN).

MPLS VPN is a family of methods for using Multiprotocol Label Switching (MPLS) to create virtual private networks (VPNs). MPLS VPN is a flexible method to transport and route several types of network traffic using an MPLS backbone.

In IP-based computer networks, virtual routing and forwarding (VRF) is a technology that allows multiple instances of a routing table to co-exist within the same router at the same time. One or more logical or physical interfaces may have a VRF and these VRFs do not share routes. Therefore, the packets are only forwarded between interfaces on the same VRF. VRFs are the TCP/IP layer 3 equivalent of a VLAN. Because the routing instances are independent, the same or overlapping IP addresses can be used without conflicting with each other. Network functionality is improved because network paths can be segmented without requiring multiple routers.

<span class="mw-page-title-main">Metro Ethernet</span> Metropolitan area network based on Ethernet standards

A metropolitan-area Ethernet, Ethernet MAN, carrier Ethernet or metro Ethernet network is a metropolitan area network (MAN) that is based on Ethernet standards. It is commonly used to connect subscribers to a larger service network or for internet access. Businesses can also use metropolitan-area Ethernet to connect their own offices to each other.

Constraint-based Routing Label Distribution Protocol (CR-LDP) is a control protocol used in some computer networks. As of February 2003, the IETF MPLS working group deprecated CR-LDP and decided to focus purely on RSVP-TE.

<span class="mw-page-title-main">Layer 2 MPLS VPN</span>

A Layer 2 MPLS VPN is a term in computer networking. It is a method that Internet service providers use to segregate their network for their customers, to allow them to transmit data over an IP network. This is often sold as a service to businesses.

In computer networking, an edge device is a device that provides an entry point into enterprise or service provider core networks. Examples include routers, routing switches, integrated access devices (IADs), multiplexers, and a variety of metropolitan area network (MAN) and wide area network (WAN) access devices. Edge devices also provide connections into carrier and service provider networks. An edge device that connects a local area network to a high speed switch or backbone may be called an edge concentrator.

Connection-oriented Ethernet refers to the transformation of Ethernet, a connectionless communication system by design, into a connection-oriented system. The aim of connection-oriented Ethernet is to create a networking technology that combines the flexibility and cost-efficiency of Ethernet with the reliability of connection-oriented protocols. Connection-oriented Ethernet is used in commercial carrier grade networks.

A provider edge router is a router between one network service provider's area and areas administered by other network providers. A network provider is usually an Internet service provider as well.

The customer edge router (CE) generally refers to the router at the customer premises that is interconnected with the provider edge router of a service provider's IP/MPLS network.

Hierarchical VLAN (HVLAN) is a proposed Ethernet standard that extends the use of enterprise Ethernet VLAN (802.1Q) to carrier networks. A number of developments have emerged in recent years to help bring Ethernet, a flexible and cost-efficient packet transport technology, to carrier networks. These developments include Q-in-Q (802.1ad), PBB (802.1ah), PBT, and PBB-TE, which bring a set of features to traditional Ethernet to make it “carrier-grade”, adding to it high-availability, OA&M, and more.

In Multiprotocol Label Switching (MPLS), a P router or provider router is a label switch router (LSR) that functions as a transit router of the core network. The P router is typically connected to one or more PE routers.

Carrier Ethernet is a marketing term for extensions to Ethernet for communications service providers that utilize Ethernet technology in their networks.

Ethernet VPN (EVPN) is a technology for carrying layer 2 Ethernet traffic as a virtual private network using wide area network protocols. EVPN technologies include Ethernet over MPLS and Ethernet over VXLAN.

References

  1. Rekhter, Yakov; Kompella, Kireeti (January 2007). Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling (Report). Internet Engineering Task Force.
  2. Lasserre, Marc; Kompella, Vach (January 2007). Virtual Private LAN Service (VPLS) Using Label Distribution Protocol (LDP) Signaling (Report). Internet Engineering Task Force.
  3. MAC Address Translation for Enabling Scalable Virtual Private LAN Services