Virtual Extensible LAN

Last updated

Virtual eXtensible LAN (VXLAN) is a network virtualization technology that uses a VLAN-like encapsulation technique to encapsulate OSI layer 2 Ethernet frames within layer 4 UDP datagrams, using 4789 as the default IANA-assigned destination UDP port number, [1] although many implementations that predate the IANA assignment use port 8472. VXLAN attempts to address the scalability problems associated with large cloud computing deployments. [2] VXLAN endpoints, which terminate VXLAN tunnels and may be either virtual or physical switch ports, are known as VXLAN tunnel endpoints (VTEPs). [3] [4]

Contents

VXLAN is an evolution of efforts to standardize on an overlay encapsulation protocol. Compared to single-tagged IEEE 802.1Q VLANs which provide a limited number of layer-2 VLANs (4094, using a 12-bit VLAN ID), VXLAN increases scalability up to about 16 million logical networks (using a 24-bit VNID) and allows for layer-2 adjacency across IP networks. Multicast or unicast with head-end replication (HER) is used to flood Broadcast, unknown-unicast and multicast traffic. [5]

The VXLAN specification was originally created by VMware, Arista Networks and Cisco. [6] [7] Other backers of the VXLAN technology include Huawei, [8] Broadcom, Citrix, Pica8, Big Switch Networks, Arrcus, Cumulus Networks, Dell EMC, Ericsson, Mellanox, [9] FreeBSD, [10] OpenBSD, [11] Red Hat, [12] Joyent, and Juniper Networks.

VXLAN is officially documented by the IETF in RFC 7348. [12] VXLAN encapsulates a MAC frame in a UDP datagram for transport across an IP network, [13] creating an overlay network or tunnel.

Open vSwitch is an example of a software-based virtual network switch that supports VXLAN overlay networks.

See also

Related Research Articles

<span class="mw-page-title-main">Multicast</span> Computer networking technique

In computer networking, multicast is a type of group communication where data transmission is addressed to a group of destination computers simultaneously. Multicast can be one-to-many or many-to-many distribution. Multicast differs from physical layer point-to-multipoint communication.

The Routing Information Protocol (RIP) is one of the oldest distance-vector routing protocols which employs the hop count as a routing metric. RIP prevents routing loops by implementing a limit on the number of hops allowed in a path from source to destination. The largest number of hops allowed for RIP is 15, which limits the size of networks that RIP can support.

<span class="mw-page-title-main">VLAN</span> Network communications domain that is isolated at the data link layer

A virtual local area network (VLAN) is any broadcast domain that is partitioned and isolated in a computer network at the data link layer. In this context, virtual refers to a physical object recreated and altered by additional logic, within the local area network. Basically, a VLAN behaves like a virtual switch or network link that can share the same physical structure with other VLANs while staying logically separate from them. Between network devices, VLANs work by applying tags to network frames and handling these tags in networking systems –creating the appearance and functionality of network traffic that is physically on a single network but acts as if it were split between separate networks. In this way, VLANs can keep network applications separate despite being connected to the same physical network, and without requiring multiple sets of cabling and networking devices to be deployed.

A multilayer switch (MLS) is a computer networking device that switches on OSI layer 2 like an ordinary network switch and provides extra functions on higher OSI layers. The MLS was invented by engineers at Digital Equipment Corporation.

In computer networking, Layer 2 Tunneling Protocol (L2TP) is a tunneling protocol used to support virtual private networks (VPNs) or as part of the delivery of services by ISPs. It uses encryption ('hiding') only for its own control messages, and does not provide any encryption or confidentiality of content by itself. Rather, it provides a tunnel for Layer 2, and the tunnel itself may be passed over a Layer 3 encryption protocol such as IPsec.

An overlay network is a computer network that is layered on top of another network. The concept of overlay networking is distinct from the traditional model of OSI layered networks, and almost always assumes that the underlay network is an IP network of some kind.

IP multicast is a method of sending Internet Protocol (IP) datagrams to a group of interested receivers in a single transmission. It is the IP-specific form of multicast and is used for streaming media and other network applications. It uses specially reserved multicast address blocks in IPv4 and IPv6.

In computer networking, TUN and TAP are kernel virtual network devices. Being network devices supported entirely in software, they differ from ordinary network devices which are backed by physical network adapters.

Network load balancing is the ability to balance traffic across two or more WAN links without using complex routing protocols like BGP.

Data center bridging (DCB) is a set of enhancements to the Ethernet local area network communication protocol for use in data center environments, in particular for use with clustering and storage area networks.

IEEE 802.1aq is an amendment to the IEEE 802.1Q networking standard which adds support for Shortest Path Bridging (SPB). This technology is intended to simplify the creation and configuration of Ethernet networks while enabling multipath routing.

TRILL is a networking protocol for optimizing bandwidth and resilience in Ethernet networks, implemented by devices called TRILL switches. TRILL combines techniques from bridging and routing, and is the application of link-state routing to the VLAN-aware customer-bridging problem. Routing bridges (RBridges) are compatible with, and can incrementally replace, previous IEEE 802.1 customer bridges. TRILL Switches are also compatible with IPv4 and IPv6, routers and end systems. They are invisible to current IP routers, and like conventional routers, RBridges terminate the broadcast, unknown-unicast and multicast traffic of DIX Ethernet and the frames of IEEE 802.2 LLC including the bridge protocol data units of the Spanning Tree Protocol.

RDMA over Converged Ethernet (RoCE) is a network protocol which allows remote direct memory access (RDMA) over an Ethernet network. There are multiple RoCE versions. RoCE v1 is an Ethernet link layer protocol and hence allows communication between any two hosts in the same Ethernet broadcast domain. RoCE v2 is an internet layer protocol which means that RoCE v2 packets can be routed. Although the RoCE protocol benefits from the characteristics of a converged Ethernet network, the protocol can also be used on a traditional or non-converged Ethernet network.

Network Virtualization using Generic Routing Encapsulation (NVGRE) is a network virtualization technology that attempts to alleviate the scalability problems associated with large cloud computing deployments. It uses Generic Routing Encapsulation (GRE) to tunnel layer 2 packets over layer 3 networks. Its principal backer is Microsoft.

Overlay transport virtualization (OTV) is a Cisco proprietary protocol for relaying layer 2 communications between layer 3 computer networks.

Distributed Overlay Virtual Ethernet (DOVE) is a tunneling and virtualization technology for computer networks, created and backed by IBM. DOVE allows creation of network virtualization layers for deploying, controlling, and managing multiple independent and isolated network applications over a shared physical network infrastructure.

<span class="mw-page-title-main">Open vSwitch</span> Virtual network switch

Open vSwitch (OVS) is an open-source implementation of a distributed virtual multilayer switch. The main purpose of Open vSwitch is to provide a switching stack for hardware virtualization environments, while supporting multiple protocols and standards used in computer networks.

<span class="mw-page-title-main">Broadcast, unknown-unicast and multicast traffic</span> Computer networking concept

Broadcast, unknown-unicast and multicast traffic is network traffic transmitted using one of three methods of sending data link layer network traffic to a destination of which the sender does not know the network address. This is achieved by sending the network traffic to multiple destinations on an Ethernet network. As a concept related to computer networking, it includes three types of Ethernet modes: broadcast, unicast and multicast Ethernet. BUM traffic refers to that kind of network traffic that will be forwarded to multiple destinations or that cannot be addressed to the intended destination only.

<span class="mw-page-title-main">Provider-provisioned VPN</span>

A provider-provisioned VPN (PPVPN) is a virtual private network (VPN) implemented by a connectivity service provider or large enterprise on a network they operate on their own, as opposed to a "customer-provisioned VPN" where the VPN is implemented by the customer who acquires the connectivity service on top of the technical specificities of the provider.

References

  1. Steve Herrod (August 30, 2011). "Towards Virtualized Networking for the Cloud". VMware. Retrieved 2013-02-25.
  2. "Configuring VXLANs" (PDF). Cisco. Retrieved 2024-04-17.
  3. Andre Pech (2013-11-08). "Running OpenStack over a VXLAN Fabric" (PDF). openstack.org. pp. 8, 12. Retrieved 2016-07-04.
  4. "Open vSwitch Manual: vtep – hardware_vtep database schema". openvswitch.org. Retrieved 2016-07-04.
  5. "Arista Expands Leaf Switch Product Portfolio" (Press release). Arista Networks. 22 October 2014. Retrieved 8 November 2014. Arista's updated VXLAN implementation eliminates the need for multicast in the underlay network by using Head End Replication for forwarding broadcast, multicast and unknown unicast traffic
  6. Timothy Prickett Morgan (30 August 2011). "VMware, Cisco stretch virtual LANs across the heavens". The Register. Retrieved 2013-02-25.
  7. "VXLAN Bridges Virtual and Physical Networks to the Cloud" (PDF). Retrieved 2013-12-01.
  8. "Huawei CE12800 Series Data Center Switches - Huawei products". Huawei. December 2012.
  9. Timothy Pricket Morgan (April 23, 2013). "Mellanox adds VM-flitting to ConnectX-3 adapters - Going Pro with VXLAN". The Register.
  10. "FreeBSD 10.2-RELEASE Release Notes". The FreeBSD Project. Retrieved 30 June 2016.
  11. Reyk Floeter (October 14, 2013). "OpenBSD vxlan implementation". Reyk Floeter.
  12. 1 2 Mahalingam, Mallik; Dutt, Dinesh G.; et al. (August 2014). VXLAN: A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks. IETF. doi: 10.17487/RFC7348 . RFC 7348.
  13. M. Mahalingam (February 22, 2013). "What Is VXLAN". Huawei. Retrieved 2013-02-25.