IEEE 802.1ah

Last updated

IEEE 802.1ah is an amendment to the IEEE 802.1Q networking standard which adds support for Provider Backbone Bridges. It includes an architecture and a set of protocols for routing over a provider's network, allowing interconnection of multiple provider bridge networks without losing each customer's individually defined VLANs. It was initially created by Nortel before being submitted to the IEEE 802.1 committee for standardization. The final version was approved by the IEEE in June 2008 and has been integrated into IEEE 802.1Q-2011.

Contents

History

The now-ubiquitous Ethernet was initially defined as a local area network (LAN) technology to interconnect the computers within a small organization in which these host computers were very close in proximity to each other. Over the years, Ethernet has become such a popular technology that it became the default Data Link Layer (OSI Layer 2) mechanism for data transport. This created a need for extending the Ethernet from a customer LAN bridging domain to service provider MAN, also known as the Provider bridging domain. For this, a 4 byte S-Tag or Service Tag, a type of Virtual LAN tag, was added to the header of the Ethernet frame in IEEE 802.1ad standard. In the service provider domain, switching was based on S-Tag and destination MAC address, and C-tag was used to create virtual LAN within the customer domain. This technology is also known as QinQ or Q-tunneling.

QinQ does not offer true separation of customer and provider domains but is merely a way to overcome the limitations on the VLAN identifier space. It can also help in separation of the customer and provider control domains when used with other features like control protocol tunneling or Per-VLAN Spanning Tree etc. There is still the problem of having too little control on the MAC addresses, since QinQ forwarding is still based on the customer destination addresses. Thus, better mechanisms are needed.

Description

The idea of PBB is to offer complete separation of customer and provider domains. For this purpose, a new Ethernet header has been defined. This header may take multiple different forms, but the main components of the header are:

Field descriptionField name or valueSize (bytes)
Backbone component
Backbone destination addressB-DA6
Backbone source addressB-SA6
EtherType0x88A82
Backbone VLAN identifierB-TAG/B-VID2
Service encapsulation
EtherType0x88E72
FlagsDrop Eligible Indicator (DEI), and No Customer Address (NCA) indication (e.g. OAM frames)1
Service identifierI-SID3
Original customer frame
Customer destination addressC-DA6
Customer source addressC-SA6
EtherType0x81002
Customer VLAN identifierC-TAG/C-VID2
EtherTypee.g. 0x08002
Customer payloade.g. IPv4/TCP/HTTPVariable

PBB defines a 48-bit B-DA and 48-bit B-SA to indicate the backbone source and destination MAC addresses. It also defines a 12-bit B-VID (backbone VLAN ID) and 24-bit I-SID (Service Instance VLAN ID). The bridges in the PBB domain switch based on the B-VID and B-DA values, which contain 60 bits total. Bridges learn based on the B-SA and ingress port value and hence is completely unaware of the customer MAC addresses. I-SID allows distinguishing the services within a PBB domain.

PBB is the foundation for the IEEE 802.1Qay PBB-TE standard, which was standardized in 2009. [1]

PBB is sometimes referred to as MAC-in-MAC.[ why? ]

See also

Related Research Articles

A virtual local area network (VLAN) is any broadcast domain that is partitioned and isolated in a computer network at the data link layer. In this context, virtual refers to a physical object recreated and altered by additional logic, within the local area network. Basically, a VLAN behaves like a virtual switch or network link that can share the same physical structure with other VLANs while staying logically separate from them. Between network devices, VLANs work by applying tags to network frames and handling these tags in networking systems – creating the appearance and functionality of network traffic that is physically on a single network but acts as if it is split between separate networks. In this way, VLANs can keep network applications separate despite being connected to the same physical network, and without requiring multiple sets of cabling and networking devices to be deployed.

EtherType is a two-octet field in an Ethernet frame. It is used to indicate which protocol is encapsulated in the payload of the frame and is used at the receiving end by the data link layer to determine how the payload is processed. The same field is also used to indicate the size of some Ethernet frames.

IEEE 802.1 is a working group of the IEEE 802 project of the IEEE Standards Association.

IEEE 802.1Q, often referred to as Dot1q, is the networking standard that supports virtual local area networking (VLANs) on an IEEE 802.3 Ethernet network. The standard defines a system of VLAN tagging for Ethernet frames and the accompanying procedures to be used by bridges and switches in handling such frames. The standard also contains provisions for a quality-of-service prioritization scheme commonly known as IEEE 802.1p and defines the Generic Attribute Registration Protocol.

<span class="mw-page-title-main">Metro Ethernet</span> Metropolitan area network based on Ethernet standards

A metropolitan-area Ethernet, Ethernet MAN, carrier Ethernet or metro Ethernet network is a metropolitan area network (MAN) that is based on Ethernet standards. It is commonly used to connect subscribers to a larger service network or for internet access. Businesses can also use metropolitan-area Ethernet to connect their own offices to each other.

Cisco Inter-Switch Link (ISL) is a Cisco proprietary link layer protocol that maintains VLAN information in Ethernet frames as traffic flows between switches and routers, or switches and switches. ISL is Cisco's VLAN encapsulation protocol and is supported only on some Cisco equipment over the Fast and Gigabit Ethernet links. It is offered as an alternative to the IEEE 802.1Q standard, a widely used VLAN tagging protocol, although the use of ISL for new sites is deprecated by Cisco.

IEEE 802.1ag is an amendment to the IEEE 802.1Q networking standard which introduces Connectivity Fault Management (CFM). This defines protocols and practices for the operations, administration, and maintenance (OAM) of paths through 802.1 bridges and local area networks (LANs). The final version was approved by the IEEE in 2007.

IEEE P802.1p was a task group active from 1995 to 1998, responsible for adding traffic class expediting and dynamic multicast filtering to the IEEE 802.1D standard. The task group developed a mechanism for implementing quality of service (QoS) at the media access control (MAC) level. Although this technique is commonly referred to as IEEE 802.1p, the group's work with the new priority classes and Generic Attribute Registration Protocol (GARP) was not published separately but was incorporated into a major revision of the standard, IEEE 802.1D-1998, which subsequently was incorporated into IEEE 802.1Q-2014 standard. The work also required a short amendment extending the frame size of the Ethernet standard by four bytes which was published as IEEE 802.3ac in 1998.

Provider Backbone Bridge Traffic Engineering (PBB-TE) is a computer networking technology specified in IEEE 802.1Qay, an amendment to the IEEE 802.1Q standard. PBB-TE adapts Ethernet to carrier class transport networks. It is based on the layered VLAN tags and MAC-in-MAC encapsulation defined in IEEE 802.1ah, but it differs from PBB in eliminating flooding, dynamically created forwarding tables, and spanning tree protocols. Compared to PBB and its predecessors, PBB-TE behaves more predictably and its behavior can be more easily controlled by the network operator, at the expense of requiring up-front connection configuration at each bridge along a forwarding path. PBB-TE Operations, Administration, and Management (OAM) is usually based on IEEE 802.1ag. It was initially based on Nortel's Provider Backbone Transport (PBT).

In computer networking, an Ethernet frame is a data link layer protocol data unit and uses the underlying Ethernet physical layer transport mechanisms. In other words, a data unit on an Ethernet link transports an Ethernet frame as its payload.

Connection-oriented Ethernet refers to the transformation of Ethernet, a connectionless communication system by design, into a connection-oriented system. The aim of connection-oriented Ethernet is to create a networking technology that combines the flexibility and cost-efficiency of Ethernet with the reliability of connection-oriented protocols. Connection-oriented Ethernet is used in commercial carrier grade networks.

Hierarchical VLAN (HVLAN) is a proposed Ethernet standard that extends the use of enterprise Ethernet VLAN (802.1Q) to carrier networks. A number of developments have emerged in recent years to help bring Ethernet, a flexible and cost-efficient packet transport technology, to carrier networks. These developments include Q-in-Q (802.1ad), PBB (802.1ah), PBT, and PBB-TE, which bring a set of features to traditional Ethernet to make it “carrier-grade”, adding to it high-availability, OA&M, and more.

Carrier Ethernet is a marketing term for extensions to Ethernet for communications service providers that utilize Ethernet technology in their networks.

Stream Reservation Protocol (SRP) is an enhancement to Ethernet that implements admission control. In September 2010 SRP was standardized as IEEE 802.1Qat which has subsequently been incorporated into IEEE 802.1Q-2011. SRP defines the concept of streams at layer 2 of the OSI model. Also provided is a mechanism for end-to-end management of the streams' resources, to guarantee quality of service (QoS).

Data center bridging (DCB) is a set of enhancements to the Ethernet local area network communication protocol for use in data center environments, in particular for use with clustering and storage area networks.

IEEE 802.1aq is an amendment to the IEEE 802.1Q networking standard which adds support for Shortest Path Bridging (SPB). This technology is intended to simplify the creation and configuration of Ethernet networks while enabling multipath routing.

IEEE 802.1ad is an amendment to the IEEE 802.1Q-1998 networking standard which adds support for provider bridges. It was incorporated into the base 802.1Q standard in 2011. The technique specified by the standard is known informally as stacked VLANs or QinQ.

TRILL is an Internet Standard implemented by devices called TRILL switches. TRILL combines techniques from bridging and routing, and is the application of link-state routing to the VLAN-aware customer-bridging problem. Routing bridges (RBridges) are compatible with and can incrementally replace previous IEEE 802.1 customer bridges. TRILL Switches are also compatible with IPv4 and IPv6, routers and end systems. They are invisible to current IP routers, and like conventional routers, RBridges terminate the broadcast, unknown-unicast and multicast traffic of DIX Ethernet and the frames of IEEE 802.2 LLC including the bridge protocol data units of the Spanning Tree Protocol.

Virtual Extensible LAN (VXLAN) is a network virtualization technology that attempts to address the scalability problems associated with large cloud computing deployments. It uses a VLAN-like encapsulation technique to encapsulate OSI layer 2 Ethernet frames within layer 4 UDP datagrams, using 4789 as the default IANA-assigned destination UDP port number, although many implementations that predate the IANA assignment use port 8472. VXLAN endpoints, which terminate VXLAN tunnels and may be either virtual or physical switch ports, are known as VXLAN tunnel endpoints (VTEPs).

Time-Sensitive Networking (TSN) is a set of standards under development by the Time-Sensitive Networking task group of the IEEE 802.1 working group. The TSN task group was formed in November 2012 by renaming the existing Audio Video Bridging Task Group and continuing its work. The name changed as a result of the extension of the working area of the standardization group. The standards define mechanisms for the time-sensitive transmission of data over deterministic Ethernet networks.

References

  1. "Virtual Bridged Local Area Networks Amendment 10: Provider Backbone Bridge Traffic Engineering" (PDF). IEEE Standard 802.1Qay-2009.