Oracle VM Server for SPARC

Last updated
Logical Domains / Oracle VM Server for SPARC
Original author(s) Sun Microsystems
Developer(s) Oracle Corporation
Stable release
3.6.2 [1] / December 2019
Operating system Solaris
Platform SPARC V9 (T-Series, M-Series)
Type Hypervisor
License Proprietary
Website www.oracle.com/virtualization/vm-server-for-sparc/

Logical Domains (LDoms or LDOM) is the server virtualization and partitioning technology for SPARC V9 processors. It was first released by Sun Microsystems in April 2007. After the Oracle acquisition of Sun in January 2010, the product has been re-branded as Oracle VM Server for SPARC from version 2.0 onwards.

Contents

Each domain is a full virtual machine with a reconfigurable subset of hardware resources. Domains can be securely live migrated between servers while running. Operating systems running inside Logical Domains can be started, stopped, and rebooted independently. A running domain can be dynamically reconfigured to add or remove CPUs, RAM, or I/O devices without requiring a reboot. Using Dynamic Resource Management, CPU resources can be automatically reconfigured as needed. [2]

Supported hardware

SPARC hypervisors run in hyperprivileged execution mode, which was introduced in the sun4v architecture. The sun4v processors released as of October 2015 are the UltraSPARC T1, T2, T2+, T3, [3] T4, [4] T5, M5, M6, M10, and M7. Systems based on UltraSPARC T1 support only Logical Domains versions 1.0-1.2. [5] The newer types of T-series servers support both older Logical Domains and newer Oracle VM Server for SPARC product version 2.0 and later. These include:

UltraSPARC T1-based:

UltraSPARC T2-based:

UltraSPARC T2 Plus systems:

SPARC T3 systems: [6]

SPARC T4 systems [4]

SPARC T5 systems [7]

SPARC T7 systems, [8] which use the same SPARC M7 processor as the M7-8 and M7-16 servers listed below.

SPARC M-Series systems [9] [7] [10]

Technically, the virtualization product consists of two interdependent components: the hypervisor in the SPARC server firmware and the Logical Domains Manager software installed on the Solaris operating system running within the control domain (see Logical Domain roles, below). Because of this, each particular version of Logical Domains (Oracle VM Server for SPARC) software requires a certain minimum version of the hypervisor to be installed into the server firmware.

Logical Domains exploits the chip multithreading (CMT) nature of the "CoolThreads" processors. A single chip contains up to 32 CPU cores, and each core has either four hardware threads (for the UltraSPARC T1) or eight hardware threads (for the UltraSPARC T2/T2+, and SPARC T3/T4 and later) that act as virtual CPUs. All CPU cores execute instructions concurrently, and each core switches between threads—typically when a thread stalls on a cache miss or goes idle—within a single clock cycle. This lets the processor gain throughput that is lost during cache misses in conventional CPU designs. Each domain is assigned its own CPU threads and executes CPU instructions at native speed, avoiding the virtualization overhead for privileged operation trap-and-emulate or binary rewrite typical of most VM designs.

Each server can support as many as one domain per hardware thread up to a maximum of 128. That's up to 32 domains for the UltraSPARC T1, 64 domains for the UltraSPARC T2 and SPARC T4-1, and 128 domains for UltraSPARC T3 as examples single-processor (single-socket) servers. Servers with 2-4 UltraSPARC T2+ or 2-8 SPARC T3-T5 CPUs support as many logical domains as the number of processors multiplied by the number of threads of each CPU up to the limit of 128. [11] M-series servers can be subdivided into physical domains ("PDoms"), each of which can host up to 128 logical domains. Typically, a given domain is assigned multiple CPU threads or CPU cores for additional capacity within a single OS instance. CPU threads, RAM, and virtual I/O devices can be added to or removed from a domain by administrator issuing command in the control domain. This change takes effect immediately without the need to reboot the affected domain, which can immediately make use of added CPU threads or continue operating with reduced resources.

When hosts are connected to shared storage (SAN or NAS), running guest domains can be securely live migrated between servers without outage (starting with Oracle VM Server for SPARC version 2.1). The process encrypts guest VM memory contents before they are transmitted between servers, using cryptographic accelerators available on all processors with sun4v architecture.

Logical Domain roles

All logical domains are the same except for the roles that they are assigned. There are multiple roles that logical domains can perform such as:

Control domain, as its name implies, controls the logical domain environment. It is used to configure machine resources and guest domains, and provides services necessary for domain operation, such as virtual console service. The control domain also normally acts as a service domain.

Service domains present virtual services, such as virtual disk drives and network switches, to other domains. In most cases, guest domains perform I/O via bridged access through services domains, which are usually I/O domains and directly connected to the physical devices. Service domains can provide virtual LANs and SANs as well as bridge through to physical devices. Disk images can reside on complete local physical disks, shared SAN block devices, their slices, or even on files contained on a local UFS or ZFS file system, or on a shared NFS export or iSCSI target.

Control and service functions can be combined within domains, however it is recommended that user applications not run within control or service domains in order to protect domain stability and performance.

I/O domains have direct ownership of a PCI bus, or card on a bus, or Single Root I/O Virtualization (SR-IOV) function, providing direct access to physical I/O devices, such as a network card in a PCI controller. An I/O domain may use its devices to have native I/O performance its own applications, or act as a service domain and share the devices to other domains as virtual devices.

Root domains have direct ownership of PCIe "root complex" and all associated PCIe slots. This can be used to grant access to physical I/O devices. A root domain is also an I/O domain. There are a maximum of two root domains for the UltraSPARC T1 (Niagara) servers, one of which also must be the control domain. UltraSPARC T2 Plus, SPARC T3, and SPARC T4 servers can have as many as 4 root domains, limited by the number of PCIe root complexes installed on the server. SPARC T5 servers can have up to 16 root complex domains. Multiple I/O domains can be configured to provide resiliency against failures.

Guest domains run an operating system instance without performing any of the above roles, but leverage the services provided by the above in order to run applications.

Supported guest operating systems

The only operating system supported by the vendor for running within logical domains is Solaris 10 11/06 and later updates, and all Solaris 11 releases.

There are operating systems that are not officially supported, but may still be capable of running within logical domains:

See also

Related Research Articles

<span class="mw-page-title-main">Sun Microsystems</span> American computer company, 1982–2010

Sun Microsystems, Inc. was an American technology company that sold computers, computer components, software, and information technology services and created the Java programming language, the Solaris operating system, ZFS, the Network File System (NFS), and SPARC microprocessors. Sun contributed significantly to the evolution of several key computing technologies, among them Unix, RISC processors, thin client computing, and virtualized computing. Notable Sun acquisitions include Cray Business Systems Division, Storagetek, and Innotek GmbH, creators of VirtualBox. Sun was founded on February 24, 1982. At its height, the Sun headquarters were in Santa Clara, California, on the former west campus of the Agnews Developmental Center.

<span class="mw-page-title-main">SPARC</span> RISC instruction set architecture

SPARC is a reduced instruction set computer (RISC) instruction set architecture originally developed by Sun Microsystems. Its design was strongly influenced by the experimental Berkeley RISC system developed in the early 1980s. First developed in 1986 and released in 1987, SPARC was one of the most successful early commercial RISC systems, and its success led to the introduction of similar RISC designs from many vendors through the 1980s and 1990s.

Simultaneous multithreading (SMT) is a technique for improving the overall efficiency of superscalar CPUs with hardware multithreading. SMT permits multiple independent threads of execution to better use the resources provided by modern processor architectures.

<span class="mw-page-title-main">Sun Enterprise</span>

Sun Enterprise is a range of UNIX server computers produced by Sun Microsystems from 1996 to 2001. The line was launched as the Sun Ultra Enterprise series; the Ultra prefix was dropped around 1998. These systems are based on the 64-bit UltraSPARC microprocessor architecture and related to the contemporary Ultra series of computer workstations. Like the Ultra series, they run Solaris. Various models, from single-processor entry-level servers to large high-end multiprocessor servers were produced. The Enterprise brand was phased out in favor of the Sun Fire model line from 2001 onwards.

A hypervisor is a type of computer software, firmware or hardware that creates and runs virtual machines. A computer on which a hypervisor runs one or more virtual machines is called a host machine, and each virtual machine is called a guest machine. The hypervisor presents the guest operating systems with a virtual operating platform and manages the execution of the guest operating systems. Unlike an emulator, the guest executes most instructions on the native hardware. Multiple instances of a variety of operating systems may share the virtualized hardware resources: for example, Linux, Windows, and macOS instances can all run on a single physical x86 machine. This contrasts with operating-system–level virtualization, where all instances must share a single kernel, though the guest operating systems can differ in user space, such as different Linux distributions with the same kernel.

<span class="mw-page-title-main">Sun Fire</span> Server series by Sun Microsystems

Sun Fire is a series of server computers introduced in 2001 by Sun Microsystems. The Sun Fire branding coincided with the introduction of the UltraSPARC III processor, superseding the UltraSPARC II-based Sun Enterprise series. In 2003, Sun broadened the Sun Fire brand, introducing Sun Fire servers using the Intel Xeon processor. In 2004, these early Intel Xeon models were superseded by models powered by AMD Opteron processors. Also in 2004, Sun introduced Sun Fire servers powered by the UltraSPARC IV dual-core processor. In 2007, Sun again introduced Intel Xeon Sun Fire servers, while continuing to offer the AMD Opteron versions as well.

A logical partition (LPAR) is a subset of a computer's hardware resources, virtualized as a separate computer. In effect, a physical machine can be partitioned into multiple logical partitions, each hosting a separate instance of an operating system.

<span class="mw-page-title-main">UltraSPARC T1</span> Microprocessor by Sun Microsystems

Sun Microsystems' UltraSPARC T1 microprocessor, known until its 14 November 2005 announcement by its development codename "Niagara", is a multithreading, multicore CPU. Designed to lower the energy consumption of server computers, the CPU typically uses 72 W of power at 1.4 GHz.

The Sun Fire 15K was an enterprise-class server computer from Sun Microsystems based on the SPARC V9 processor architecture. It was announced on September 25, 2001, in New York City, superseding the Sun Enterprise 10000. General availability was in January 2002; the last to be shipped was in May 2005.

<span class="mw-page-title-main">Rock (processor)</span>

Rock was a multithreading, multicore, SPARC microprocessor under development at Sun Microsystems. Canceled in 2010, it was a separate project from the SPARC T-Series (CoolThreads/Niagara) family of processors.

<span class="mw-page-title-main">UltraSPARC T2</span> Microprocessor by Sun Microsystems

Sun Microsystems' UltraSPARC T2 microprocessor is a multithreading, multi-core CPU. It is a member of the SPARC family, and the successor to the UltraSPARC T1. The chip is sometimes referred to by its codename, Niagara 2. Sun started selling servers with the T2 processor in October 2007.

Solaris Containers is an implementation of operating system-level virtualization technology for x86 and SPARC systems, first released publicly in February 2004 in build 51 beta of Solaris 10, and subsequently in the first full release of Solaris 10, 2005. It is present in illumos distributions, such as OpenIndiana, SmartOS, Tribblix and OmniOS, as well as in the official Oracle Solaris 11 release.

The SPARC Enterprise series is a range of UNIX server computers based on the SPARC V9 architecture. It was co-developed by Sun Microsystems and Fujitsu, announced on June 1st, 2004 and introduced in 2007. They were marketed and sold by Sun Microsystems, Fujitsu, and Fujitsu Siemens Computers under the common brand of "SPARC Enterprise", superseding Sun's Sun Fire and Fujitsu's PRIMEPOWER server product lines. Codename is APL.

Oracle VM Server for x86 is the server virtualization offering from Oracle Corporation. Oracle VM Server for x86 incorporates the free and open-source Xen hypervisor technology, supports Windows, Linux, and Solaris guests and includes an integrated Web based management console. Oracle VM Server for x86 features fully tested and certified Oracle Applications stack in an enterprise virtualization environment.

The SPARC64 V (Zeus) is a SPARC V9 microprocessor designed by Fujitsu. The SPARC64 V was the basis for a series of successive processors designed for servers, and later, supercomputers.

Afara Websystems Inc. was a Sunnyvale, California, USA server company whose goal was to build servers surrounding a custom high-throughput CPU architecture, "developing IP traffic management systems that will bring quality-of-service to the next generation of IP access infrastructure." The word "Afara" means "bridge" in the West African Yoruba language.

<span class="mw-page-title-main">SPARC T3</span>

The SPARC T3 microprocessor is a multithreading, multi-core CPU produced by Oracle Corporation. Officially launched on 20 September 2010, it is a member of the SPARC family, and the successor to the UltraSPARC T2.

<span class="mw-page-title-main">SPARC T4</span>

The SPARC T4 is a SPARC multicore microprocessor introduced in 2011 by Oracle Corporation. The processor is designed to offer high multithreaded performance, as well as high single threaded performance from the same chip. The chip is the 4th generation processor in the T-Series family. Sun Microsystems brought the first T-Series processor to market in 2005.

The SPARC T-series family of RISC processors and server computers, based on the SPARC V9 architecture, was originally developed by Sun Microsystems, and later by Oracle Corporation after its acquisition of Sun. Its distinguishing feature from earlier SPARC iterations is the introduction of chip multithreading (CMT) technology, a multithreading, multicore design intended to drive greater processor utilization at lower power consumption.

In computing, a system virtual machine is a virtual machine that provides a complete system platform and supports the execution of a complete operating system (OS). These usually emulate an existing architecture, and are built with the purpose of either providing a platform to run programs where the real hardware is not available for use, or of having multiple instances of virtual machines leading to more efficient use of computing resources, both in terms of energy consumption and cost effectiveness, or both. A VM was originally defined by Popek and Goldberg as "an efficient, isolated duplicate of a real machine".

References

  1. "What's New in Oracle VM Server for SPARC Software". Oracle Corporation . Retrieved 2020-02-12.
  2. "Using Dynamic Resource Management". Oracle Corporation . Retrieved 2020-09-13.
  3. "Oracle Unveils SPARC T3 Processor and SPARC T3 Systems" . Retrieved 2010-09-20. Using the newly announced Oracle VM Server for SPARC 2.0, the SPARC T3 systems offer advanced virtualization and have multiple virtual machines ranging from one per core to 128 virtual machines on a single server, delivering greater efficiencies and lower costs through consolidation.
  4. 1 2 "Oracle Launches Next Generation SPARC T4 Servers" . Retrieved 2011-09-26. Oracle's SPARC T4 Servers Offer Built-In Virtualization, Security and Dynamic Threads.
  5. "Logical Domains 1.3 Release Notes". Oracle Corporation. 2010. Retrieved 2015-10-15. Starting with the Logical Domains 1.3 release, UltraSPARC T1 platforms are no longer supported
  6. "Oracle Unveils SPARC T3 Processor and SPARC T3 Systems" . Retrieved 2010-09-20. Sun SPARC Enterprise T-Series RackMount Systems New! SPARC T3-1 Server New! SPARC T3-2 Server New! SPARC T3-4 Server
  7. 1 2 "Oracle Unveils SPARC Servers with the World's Fastest Microprocessor" . Retrieved 2013-03-27. Oracle's new SPARC T5 and M5-32 servers include zero-overhead virtualization via Oracle VM Server for SPARC.
  8. "Oracle Announces Breakthrough Processor and Systems Design with SPARC M7" . Retrieved 2016-04-26. Dramatic Advancements in Memory Protection, Encryption Acceleration, and In-memory Database Processing Deliver End-to-End Security and Efficiency for Oracle Engineered Systems and Servers.
  9. "Fujitsu and Oracle Announce Worldwide Availability of Fujitsu M10 Servers" . Retrieved 2013-04-10. Fujitsu and Oracle's New SPARC Servers Help Customers Optimize Investment While Enjoying the Utmost Reliability
  10. "Oracle Unveils Its Fastest and Most Scalable Server and Engineered System -- the SPARC M6-32 and Oracle SuperCluster M6-32" . Retrieved 2013-09-23. Oracle's Big Memory Machines are Ideal for In-Memory Applications and Consolidation; New Architecture Delivers High-End Performance and Availability with the Price/Performance of Entry Level Servers .
  11. "Oracle Unveils SPARC T3 Processor and SPARC T3 Systems" . Retrieved 2010-09-20. Oracle VM Server for SPARC (previously called Logical Domains) is a server virtualization solution that allows up to 128 virtual servers on one system .
  12. "Index of /cdimage/ports". Cdimage.debian.org. Retrieved 6 November 2021.
  13. "Support for Logical Domains on Sun's CoolThreads servers". OpenBSD Journal . Retrieved 2009-03-19.
  14. "Wind River To Support Sun's Breakthrough UltraSPARC T1 Multithreaded Next-Generation Processor" (Press release). Wind River Systems, Inc. 2009-03-17. Archived from the original on 2009-03-21. Retrieved 2015-10-14.
  15. "Project: Linux for SPARC". oss.oracle.com. Oracle Corporation.