Prune dwarf virus | |
---|---|
Virus classification | |
(unranked): | Virus |
Realm: | Riboviria |
Kingdom: | Orthornavirae |
Phylum: | Kitrinoviricota |
Class: | Alsuviricetes |
Order: | Martellivirales |
Family: | Bromoviridae |
Genus: | Ilarvirus |
Species: | Prune dwarf virus |
Synonyms | |
cherry chlorotic ringspot virus Contents |
Prune dwarf virus (PDV) is an economically important plant pathogenic virus affecting Prunus species globally. PDV is found worldwide due to easy transmission through seed, pollen, and vegetative propagation. [1] The virus is in the family Bromoviridae an important family of plant RNA viruses containing six genera, including Alfamovirus , Ilarvirus , Bromovirus , Amularvirus, Oleavirus , and Cucumovirus . [2] PDV belongs to the genera Ilarvirus. It can cause dwarfism of leaves on certain prune and plum plants. It will also cause yellows in sour cherry, especially when present with Prunus necrotic ringspot virus. [3] There are no known transmission vectors, though the pollen of infected cherry trees has been found to infect other cherry trees a small percent of the time. [4]
All cultivated species of the genus Prunus including plums, cherries (sour and sweet), almonds, peaches, and apricots, are susceptible to PDV. PDV causes more damage to Prunus than PNRSV. Symptoms are variable and depend on climate, virus isolate, host species, and cultivar. [5] Common symptoms of PDV are stunting of the tree, necrosis, and chlorosis. Symptoms of PDV in peach include darker green foliage, rosette formation in developing shoots, shortened internodes, and reduction in both plant and fruit growth. [6] [7] Frequently, PDV occurs in mix infections with other ilarviruses, like PNRSV. [8] Mixed infection of PDV and PNRSV reduce yield by up to 60% in peach, along with bark splitting and increased sucker production. [8]
PDV and PNRSV are the most common viruses affecting peach in the southeastern US. PDV and PNRSV can cause disease independently of each other or can co-infect, resulting in a synergistic interaction causing a distinct dwarfing disease called peach stunt. [9] Peach stunt disease symptoms include stunting, defoliation, reduced fruit yield, reduction in trunk circumference, and doubled production of water sprouts. [7]
Transmission of PDV mainly occurs through pollen, seed, and vegetative propagation (grafting and budding). PDV infected pollen can be transmitted from tree to tree (horizontal transmission) and from parent to progeny (vertical transmission). [10] [1] Seed transmission for PDV has been confirmed in various Prunus species. [11] In P. mahaleb, a cherry rootstock, the major method of PDV dispersal is through seed and can result in 40% to 50% seed transmission efficiency. [12] PDV is regularly inspected in inmported seeds from P. cerasifera, P. Persia, P. armeniaca, P. avian, P. mandshurica, P. serotina, and P. cerasus. [13]
Although there are no known transmission vectors for PDV, there are virus facilitators. Bees have been found to facilitate the transmission of PDV through infected PDV-infected pollen from infected trees to healthy trees, [14] Additionally, thrips have also been shown to help facilitate the transmission of PDV and PNRSV by the creation of mechanical wounds allowing for virus transmission. [15]
PDV is a multicomponent virus. Virions of PDV are unenveloped and have varying symmetries from quasi-isometric to bacilliform. [16]
The PDV genome is divided into three segmented positive sense single-stranded (SS) RNA. RNA1 and RNA2 each has only a single ORF, encodes P1 protein and P2 protein, respectively. RNA3 possesses two ORFs which encodes movement protein (MP) and the viral coat protein (CP), respectively. [9] [17] Each of these RNA segments is individually packaged into viral capsids. [13] The P1 protein encoded by ORF1 is an enzymatic protein with two domains, a methyltransferase domain and C-proximal domain, and is involved in the viral RNA replication process [17] The P2 protein encoded by ORF2 is the RNA-dependent RNA polymerase (RdRp) part of the replicase enzyme. [18] Most likely, the P1 and P2 proteins together form the RNA replication complex. [18]
A phylogenetic study based on recombinant-free MP and CP sequences clustered global PDV isolates into three main groups. However, the phylogenetic trees based on P1 and P2 regions did not share the similar topology of MP and CP. Additional P1 and P2 sequences are still in need to fully understand PDV evolution. [19]
Inspection of PDV and other quarantine viruses was done using enzyme-linked immunosorbent assay (ELISA). [20] Yet, due to low sensitivity and false positive reactions, other methods liked RT-PCR and PCR have been explored due to their higher detection sensitivity. [21] [22] Additionally, early detection of PDV in propagative material is important for control and sustainable agriculture.
Phytosanitary certification schemes are applied to fruit trees this allows for the production of planting material with known variety and health status and allows for controlling the propagation of virus-tested mother plants. [8]
Prunus cerasus is a species of Prunus in the subgenus Cerasus (cherries), native to much of Europe, North Africa and West Asia. It is closely related to the sweet cherry, but has a fruit that is more acidic. Its sour pulp is edible.
A satellite is a subviral agent that depends on the coinfection of a host cell with a helper virus for its replication. Satellites can be divided into two major classes: satellite viruses and satellite nucleic acids. Satellite viruses, which are most commonly associated with plants, are also found in mammals, arthropods, and bacteria. They encode structural proteins to enclose their genetic material, which are therefore distinct from the structural proteins of their helper viruses. Satellite nucleic acids, in contrast, do not encode their own structural proteins, but instead are encapsulated by proteins encoded by their helper viruses. The genomes of satellites range upward from 359 nucleotides in length for satellite tobacco ringspot virus RNA (STobRV).
Plant viruses are viruses that affect plants. Like all other viruses, plant viruses are obligate intracellular parasites that do not have the molecular machinery to replicate without a host. Plant viruses can be pathogenic to vascular plants.
Plum pox, also known as sharka, is the most devastating viral disease of stone fruit from the genus Prunus. The disease is caused by the plum pox virus (PPV), and the different strains may infect a variety of stone fruit species including peaches, apricots, plums, nectarine, almonds, and sweet and tart cherries. Wild and ornamental species of Prunus may also become infected by some strains of the virus.
Potyvirus is a genus of positive-strand RNA viruses in the family Potyviridae. Plants serve as natural hosts. Like begomoviruses, members of this genus may cause significant losses in agricultural, pastoral, horticultural, and ornamental crops. More than 200 species of aphids spread potyviruses, and most are from the subfamily Aphidinae. The genus contains 190 species and potyviruses account for about thirty percent of all currently known plant viruses.
Potato leafroll virus (PLRV) is a member of the genus Polerovirus and family Solemoviridae. The phloem limited positive sense RNA virus infects potatoes and other members of the family Solanaceae. PLRV was first described by Quanjer et al. in 1916. PLRV is transmitted by aphids, primarily the green peach aphid, Myzus persicae. PLRV is one of the most important potato viruses worldwide but particularly devastating in countries with limited resources and management. It can be responsible for individual plant yield losses of over 50%. One estimate suggests that PLRV is responsible for an annual global yield loss of 20 million tons. Symptoms include chlorosis, necrosis and leaf curling.
Papaya ringspot virus (PRSV) is a pathogenic plant virus in the genus Potyvirus and the virus family Potyviridae which primarily infects the papaya tree.
Nepovirus is a genus of viruses in the order Picornavirales, in the family Secoviridae, in the subfamily Comovirinae. Plants serve as natural hosts. There are 40 species in this genus. Nepoviruses, unlike the other two genera in the subfamily Comovirinae, are transmitted by nematodes.
Alfalfa mosaic virus (AMV), also known as Lucerne mosaic virus or Potato calico virus, is a worldwide distributed phytopathogen that can lead to necrosis and yellow mosaics on a large variety of plant species, including commercially important crops. It is the only Alfamovirus of the family Bromoviridae. In 1931 Weimer J.L. was the first to report AMV in alfalfa. Transmission of the virus occurs mainly by some aphids, by seeds or by pollen to the seed.
Apple mosaic virus (ApMV) is a plant pathogenic virus of the family Bromoviridae. It is named after its symptoms that were first present on apples. ApMV is a positive sense RNA based virus. The disease itself has several synonyms including Mild Apple Mosaic Virus, Hop Virus, Rose Mosaic Virus, and European Plum Line Patten Virus. It causes a severe yield reduction and decreased life-expectancy of fruit trees.
Cucumber mosaic virus (CMV) is a plant pathogenic virus in the family Bromoviridae. This virus has a worldwide distribution and a very wide host range, having the reputation of the widest host range of any known plant virus. It can be transmitted from plant to plant both mechanically by sap and by aphids in a stylet-borne fashion. It can also be transmitted in seeds and by the parasitic weeds, Cuscuta sp. (dodder).
Cymbidium mosaic virus (CymMV) is a plant pathogenic virus of the family Alphaflexiviridae.
Odontoglossum ringspot virus (ORSV) is a plant pathogenic virus that belongs to the family Virgaviridae. It is one of the most common viruses affecting cultivated orchids, perhaps second only to the Cymbidium mosaic virus. It causes spots on leaves and colored streaks on flowers. If a plant is also infected with the Cymbidium mosaic virus, it can lead to a condition called blossom brown necrotic streak.
Prunus necrotic ringspot virus (PNRSV) is a plant pathogenic virus causing ring spot diseases affecting species of the genus Prunus, as well as other species such as rose and hops. PNRSV is found worldwide due to easy transmission through plant propagation methods and infected seed. The virus is in the family Bromoviridae and genus Ilarvirus. Synonyms of PNRSV include European plum line pattern virus, hop B virus, hop C virus, plum line pattern virus, sour cherry necrotic ringspot virus, and peach ringspot virus.
Tobacco ringspot virus (TRSV) is a plant pathogenic virus in the plant virus family Secoviridae. It is the type species of the genus Nepovirus. Nepoviruses are transmitted between plants by nematodes, thrips, mites, grasshoppers, and flea beetles. TRSV is also easily transmitted by sap inoculation and transmission in seeds has been reported. In recent cases it has also been shown to appear in bees, but no transmission to plants from bees has been noted.
Tobacco streak virus (TSV) is a plant pathogenic virus of the family Bromoviridae, in the genus Ilarvirus. It has a wide host range, with at least 200 susceptible species. TSV is generally more problematic in the tropics or warmer climates. TSV does not generally lead to epidemics, with the exception of sunflowers in India and Australia, and peanuts in India.
Ilarvirus is a genus of positive-strand RNA viruses in the family Bromoviridae. Plants serve as natural hosts. There are 22 species in this genus.
Orthotospovirus is a genus of negative-strand RNA viruses, in the family Tospoviridae of the order Bunyavirales, which infects plants. Tospoviruses take their name from the species Tomato spotted wilt orthotospovirus (TSWV) which was discovered in Australia in 1919. TSWV remained the only known member of the family until the early 1990s when genetic characterisation of plant viruses became more common. There are now at least twenty species in the genus with more being discovered on a regular basis. Member viruses infect over eight hundred plant species from 82 different families.
Idaeovirus is a genus of positive-sense ssRNA viruses that contains two species: Raspberry bushy dwarf virus (RBDV) and Privet idaeovirus. RBDV has two host-dependent clades: one for raspberries; the other for grapevines. Infections are a significant agricultural burden, resulting in decreased yield and quality of crops. RBDV has a synergistic relation with Raspberry leaf mottle virus, with co-infection greatly amplifying the concentration of virions in infected plants. The virus is transmitted via pollination with RBDV-infected pollen grains that first infect the stigma before causing systemic infection.
Carnation Italian Ringspot Virus (CIRV) is a plant virus that impacts carnation plants. These flowers are a popular choice in ornamental flower arrangements. This article will provide an overview of CIRV. This will include the history of the virus, information on transmission, symptoms, and characteristics, and research about how it relates to plant physiology.