Pseudescherichia vulneris

Last updated

Pseudescherichia vulneris
Pseudescherichia vulneris Gram Stain.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Gammaproteobacteria
Order: Enterobacterales
Family: Enterobacteriaceae
Genus: Pseudescherichia
Species:
P. vulneris
Binomial name
Pseudescherichia vulneris
(Brenner et al. 1983) Alnajar and Gupta, 2017

Pseudescherichia vulneris is a Gram-negative bacterial species. P. vulneris is a fermentative, oxidase-negative, motile rod, which holds characteristics of the family Enterobacteraceae. This bacterium can colonize in the respiratory tract, genital tract, stool, and urinary tract. However, P. vulneris is most often associated with wounds and has been known to colonize open wounds of both humans and animals. This association gave the bacterium its species name, vulneris, which is Latin for wound. It has also been infrequently reported in cases of meningitis. It was identified as Escherichia vulneris in 1982 with a 2017 genomic analysis of its original genus resulting in the creation of its new genus Pseudescherichia. [1] [2]

Contents

Morphology

P. vulneris has a rod-like (bacilli) shape, and it achieves motility using peritrichous flagella (covering the whole body of the bacteria). P. vulneris is facultatively anaerobic, and is not spore-forming. Optimal growth occurs at 35-37 °C, and it can colonize on a simple nutrient medium. Colonies are generally smooth and low convex with shiny surfaces. [3]

Resistance

Susceptibility studies have shown P. vulneris is susceptible to 14 antibiotics, including third-generation cephalosporins, aminoglycosides, trimethoprim, and sulfamethoxazole-trimethoprim. Similar studies have shown they have some type of resistance to the antibiotics penicillin and clindamycin, and were also marginally resistant to carbenicillin, erythromycin, tetracycline, chloramphenicol, and nitrofurantoin.

Recorded cases of infection

Studied cases

Twelve Hawaiian patients infected with strains of P. vulneris were isolated. Except for two of the infected, evidence was found of soft tissue infections from multiple bacteria, caused by the P. vulneris. The two without soft tissue infections had purulent conjunctivitis. However, none of these cases had colonies of P. vulneris considered to be abundant or pathogenic. In one study, P. vulneris strains were injected into mice using both 107 cells and 106 cells. The 107 strain failed to cause serious symptoms in the infected mice. None of the 106 strains was able to produce persisting infections. [4]

Related Research Articles

<i>Acinetobacter</i> Genus of bacteria

Acinetobacter is a genus of Gram-negative bacteria belonging to the wider class of Gammaproteobacteria. Acinetobacter species are oxidase-negative, exhibit twitching motility, and occur in pairs under magnification.

<i>Escherichia</i> Genus of bacteria

Escherichia is a genus of Gram-negative, non-spore-forming, facultatively anaerobic, rod-shaped bacteria from the family Enterobacteriaceae. In those species which are inhabitants of the gastrointestinal tracts of warm-blooded animals, Escherichia species provide a portion of the microbially derived vitamin K for their host. A number of the species of Escherichia are pathogenic. The genus is named after Theodor Escherich, the discoverer of Escherichia coli. Escherichia are facultative aerobes, with both aerobic and anaerobic growth, and an optimum temperature of 37 °C. Escherichia are usually motile by flagella, produce gas from fermentable carbohydrates, and do not decarboxylate lysine or hydrolyze arginine. Species include E. albertii, E. fergusonii, E. hermannii, E. ruysiae, E. marmotae and most notably, the model organism and clinically relevant E. coli. Formerly, Shimwellia blattae and Pseudescherichia vulneris were also classified in this genus.

<i>Enterobacter</i> Genus of bacteria

Enterobacter is a genus of common Gram-negative, facultatively anaerobic, rod-shaped, non-spore-forming bacteria of the family Enterobacteriaceae. Cultures are found in soil, water, sewage, feces and gut environments. It is the type genus of the order Enterobacterales. Several strains of these bacteria are pathogenic and cause opportunistic infections in immunocompromised hosts and in those who are on mechanical ventilation. The urinary and respiratory tracts are the most common sites of infection. The genus Enterobacter is a member of the coliform group of bacteria. It does not belong to the fecal coliforms group of bacteria, unlike Escherichia coli, because it is incapable of growth at 44.5 °C in the presence of bile salts. Some of them show quorum sensing properties.

<i>Moraxella catarrhalis</i> Species of bacterium

Moraxella catarrhalis is a fastidious, nonmotile, Gram-negative, aerobic, oxidase-positive diplococcus that can cause infections of the respiratory system, middle ear, eye, central nervous system, and joints of humans. It causes the infection of the host cell by sticking to the host cell using trimeric autotransporter adhesins.

<span class="mw-page-title-main">Carbapenem</span> Class of highly effective antibiotic agents

Carbapenems are a class of very effective antibiotic agents most commonly used for treatment of severe bacterial infections. This class of antibiotics is usually reserved for known or suspected multidrug-resistant (MDR) bacterial infections. Similar to penicillins and cephalosporins, carbapenems are members of the beta-lactam antibiotics drug class, which kill bacteria by binding to penicillin-binding proteins, thus inhibiting bacterial cell wall synthesis. However, these agents individually exhibit a broader spectrum of activity compared to most cephalosporins and penicillins. Furthermore, carbapenems are typically unaffected by emerging antibiotic resistance, even to other beta-lactams.

Adhesins are cell-surface components or appendages of bacteria that facilitate adhesion or adherence to other cells or to surfaces, usually in the host they are infecting or living in. Adhesins are a type of virulence factor.

<i>Peptostreptococcus</i> Genus of bacteria

Peptostreptococcus is a genus of anaerobic, Gram-positive, non-spore forming bacteria. The cells are small, spherical, and can occur in short chains, in pairs or individually. They typically move using cilia. Peptostreptococcus are slow-growing bacteria with increasing resistance to antimicrobial drugs. Peptostreptococcus is a normal inhabitant of the healthy lower reproductive tract of women.

<i>Burkholderia mallei</i> Species of bacterium

Burkholderia mallei is a Gram-negative, bipolar, aerobic bacterium, a human and animal pathogen of genus Burkholderia causing glanders; the Latin name of this disease (malleus) gave its name to the species causing it. It is closely related to B. pseudomallei, and by multilocus sequence typing it is a subspecies of B. pseudomallei.B. mallei evolved from B. pseudomallei by selective reduction and deletions from the B. pseudomallei genome. Unlike B. pseudomallei and other genus members, B. mallei is nonmotile; its shape is coccobacillary measuring some 1.5–3.0 μm in length and 0.5–1.0 μm in diameter with rounded ends.

<i>Chromobacterium violaceum</i> Species of bacterium

Chromobacterium violaceum is a Gram-negative, facultative anaerobic, non-sporing coccobacillus. It is motile with the help of a single flagellum which is located at the pole of the coccobacillus. Usually, there are one or two more lateral flagella as well. It is part of the normal flora of water and soil of tropical and sub-tropical regions of the world. It produces a natural antibiotic called violacein, which may be useful for the treatment of colon and other cancers. It grows readily on nutrient agar, producing distinctive smooth low convex colonies with a characteristic striking dark violet metallic sheen. Some strains of the bacteria which do not produce this pigment have also been reported. It has the ability to break down tarballs.

<i>Burkholderia thailandensis</i> Species of bacterium

Burkholderia thailandensis is a nonfermenting motile, Gram-negative bacillus that occurs naturally in soil. It is closely related to Burkholderia pseudomallei, but unlike B. pseudomallei, it only rarely causes disease in humans or animals. The lethal inoculum is approximately 1000 times higher than for B. pseudomallei. It is usually distinguished from B. pseudomallei by its ability to assimilate arabinose. Other differences between these species include lipopolysaccharide composition, colony morphology, and differences in metabolism.

<span class="mw-page-title-main">L-form bacteria</span> Bacterial growth form that lack cell walls, derived from different bacteria

L-form bacteria, also known as L-phase bacteria, L-phase variants or cell wall-deficient bacteria (CWDB), are growth forms derived from different bacteria. They lack cell walls. Two types of L-forms are distinguished: unstable L-forms, spheroplasts that are capable of dividing, but can revert to the original morphology, and stable L-forms, L-forms that are unable to revert to the original bacteria.

<i>Streptococcus canis</i> Species of bacterium

Streptococcus canis is a group G beta-hemolytic species of Streptococcus. It was first isolated in dogs, giving the bacterium its name. These bacteria are characteristically different from Streptococcus dysgalactiae, which is a human-specific group G species that has a different phenotypic chemical composition. S. canis is important to the skin and mucosal health of cats and dogs, but under certain circumstances, these bacteria can cause opportunistic infections. These infections were known to afflict dogs and cats prior to the formal description of the species in Devriese et al., 1986. However, additional studies revealed cases of infection in other mammal species, including cattle and even humans. Instances of mortality from S. canis in humans are very low with only a few reported cases, while actual instances of infection may be underreported due to mischaracterizations of the bacteria as S. dysgalactiae. This species, in general, is highly susceptible to antibiotics, and plans to develop a vaccine to prevent human infections are currently being considered.

Ewingella americana is a Gram-negative rod, and the only species in the genus Ewingella. It was first identified and characterized in 1983. Ewingella is in the family Yersiniaceae. The organism is rarely reported as a human pathogen, though it has been isolated from a variety of clinical specimens, including wounds, sputum, urine, stool, blood, synovial fluid, conjunctiva, and peritoneal dialysate. The bacterium is named in honor of William H. Ewing, an American biologist who contributed to modern taxonomy.

Anaerobic infections are caused by anaerobic bacteria. Obligately anaerobic bacteria do not grow on solid media in room air ; facultatively anaerobic bacteria can grow in the presence or absence of air. Microaerophilic bacteria do not grow at all aerobically or grow poorly, but grow better under 10% carbon dioxide or anaerobically. Anaerobic bacteria can be divided into strict anaerobes that can not grow in the presence of more than 0.5% oxygen and moderate anaerobic bacteria that are able of growing between 2 and 8% oxygen. Anaerobic bacteria usually do not possess catalase, but some can generate superoxide dismutase which protects them from oxygen.

Pathogenic <i>Escherichia coli</i> Strains of E. coli that can cause disease

Escherichia coli is a gram-negative, rod-shaped bacterium that is commonly found in the lower intestine of warm-blooded organisms (endotherms). Most E. coli strains are harmless, but pathogenic varieties cause serious food poisoning, septic shock, meningitis, or urinary tract infections in humans. Unlike normal flora E. coli, the pathogenic varieties produce toxins and other virulence factors that enable them to reside in parts of the body normally not inhabited by E. coli, and to damage host cells. These pathogenic traits are encoded by virulence genes carried only by the pathogens.

<i>Proteus penneri</i> Species of bacterium

Proteus penneri is a Gram-negative, facultatively anaerobic, rod-shaped bacterium. It is an invasive pathogen and a cause of nosocomial infections of the urinary tract or open wounds. Pathogens have been isolated mainly from the urine of patients with abnormalities in the urinary tract, and from stool. P. penneri strains are naturally resistant to numerous antibiotics, including penicillin G, amoxicillin, cephalosporins, oxacillin, and most macrolides, but are naturally sensitive to aminoglycosides, carbapenems, aztreonam, quinolones, sulphamethoxazole, and co-trimoxazole. Isolates of P. penneri have been found to be multiple drug-resistant (MDR) with resistance to six to eight drugs. β-lactamase production has also been identified in some isolates.

Escherichia fergusonii is a Gram-negative, rod-shaped species of bacterium. Closely related to the well-known species Escherichia coli, E. fergusonii was first isolated from samples of human blood. The species is named for American microbiologist William W. Ferguson.

The altered Schaedler flora (ASF) is a community of eight bacterial species: two lactobacilli, one Bacteroides, one spiral bacterium of the Flexistipes genus, and four extremely oxygen sensitive (EOS) fusiform-shaped species. The bacteria are selected for their dominance and persistence in the normal microflora of mice, and for their ability to be isolated and grown in laboratory settings. Germ-free animals, mainly mice, are colonized with ASF for the purpose of studying the gastrointestinal (GI) tract. Intestinal mutualistic bacteria play an important role in affecting gene expression of the GI tract, immune responses, nutrient absorption, and pathogen resistance. The standardized microbial cocktail enabled the controlled study of microbe and host interactions, role of microbes, pathogen effects, and intestinal immunity and disease association, such as cancer, inflammatory bowel disease, diabetes, and other inflammatory or autoimmune diseases. Also, compared to germfree animals, ASF mice have fully developed immune system, resistance to opportunistic pathogens, and normal GI function and health, and are a great representation of normal mice.

Citrobacter rodentium is a Gram-negative species of bacteria first described in 1996. It infects the intestinal tract of rodents.

Streptococcus tigurinus is a novel member of the genus Streptococcus that was first discovered in 2012 by Swedish researchers.

References

  1. Brenner, Don J.; Alma C. McWhorter; Jean K. Leete Knutson; Arnold G. Steigerwalt (June 1982). "Escherichia vulneris: a New Species of Enterobacteriaceae Associated with Human Wounds". J. Clin. Microbiol. 15 (6): 1133–1140. doi:10.1128/JCM.15.6.1133-1140.1982. PMC   272265 . PMID   7107843.
  2. Alnajar, Seema; Gupta, Radhey S. (2017-10-01). "Phylogenomics and comparative genomic studies delineate six main clades within the family Enterobacteriaceae and support the reclassification of several polyphyletic members of the family". Infection, Genetics and Evolution. 54: 108–127. doi:10.1016/j.meegid.2017.06.024. ISSN   1567-1348. PMID   28658607.
  3. ABIS Encyclopedia. “Genus Escherichia.” Regnum Prokaryote.<http://www.tgw1916.net/Enterobacteria/Escherichia.html>
  4. Pien, FD et al. “Colonization of human wounds by Escherichia vulneris and Escherichia hermannii.” J. Clin. Microbiol. 1985. 22(2): 283-285. <http://jcm.asm.org/content/44/11/4283.full>