Pyrabactin

Last updated

Pyrabactin
Pyrabactin.svg
Names
Preferred IUPAC name
4-Bromo-N-[(pyridin-2-yl)methyl]naphthalene-1-sulfonamide
Other names
4-Bromo-N-(pyridin-2-ylmethyl)naphthalene-1-sulfonamide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.212.933 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C16H13BrN2O2S/c17-15-8-9-16(14-7-2-1-6-13(14)15)22(20,21)19-11-12-5-3-4-10-18-12/h1-10,19H,11H2
    Key: GJSDYQXOSHKOGX-UHFFFAOYSA-N
  • InChI=1/C16H13BrN2O2S/c17-15-8-9-16(14-7-2-1-6-13(14)15)22(20,21)19-11-12-5-3-4-10-18-12/h1-10,19H,11H2
    Key: GJSDYQXOSHKOGX-UHFFFAOYAQ
  • Brc2c1c(cccc1)c(cc2)S(=O)(=O)NCc3ncccc3
Properties
C16H13BrN2O2S
Molar mass 377.26 g·mol−1
AppearanceWhite to off-white powder [1]
Solubility in DMSO >10 mg/mL [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Pyrabactin is a synthetic sulfonamide that mimics abscisic acid (ABA), a naturally produced stress hormone in plants that helps them cope with drought conditions by inhibiting growth. ABA can be manufactured for agricultural use; however, ABA is light-sensitive and costly to make. Pyrabactin is relatively inexpensive, easy to make, and not sensitive to light. Unlike ABA, pyrabactin activates only a few of the 14 ABA receptors in the plant needed for effective drought tolerance. [2] Its role as an ABA mimic may make pyrabactin an important tool for protecting crops against drought and cold weather. [3] [4]

The discovery of pyrabactin by Sean Cutler was named a breakthrough research of 2009 by Science magazine. [5]

Pyrabactin (for pyridyl containing ABA activator) is a naphthalene sulfonamide hypocotyl cell expansion inhibitor. A combination of genetic, transcriptomic and physiological evidence demonstrated that pyrabactin activates the ABA pathway in a manner very similar to ABA [6] . As such, pyrabactin is the first ABA agonist that is not an ABA analog and may ultimately lead to the development of a new family of synthetic plant growth regulators.

Related Research Articles

Abiotic stress is the negative impact of non-living factors on the living organisms in a specific environment. The non-living variable must influence the environment beyond its normal range of variation to adversely affect the population performance or individual physiology of the organism in a significant way.

<span class="mw-page-title-main">Herbicide</span> Type of chemical used to kill unwanted plants

Herbicides, also commonly known as weed killers, are substances used to control undesired plants, also known as weeds. Selective herbicides control specific weed species while leaving the desired crop relatively unharmed, while non-selective herbicides (sometimes called total weed killers kill plants indiscriminately. Due to herbicide resistance – a major concern in agriculture – a number of products combine herbicides with different means of action. Integrated pest management may use herbicides alongside other pest control methods.

<span class="mw-page-title-main">Plant hormone</span> Chemical compounds that regulate plant growth and development

Plant hormones are signal molecules, produced within plants, that occur in extremely low concentrations. Plant hormones control all aspects of plant growth and development, including embryogenesis, the regulation of organ size, pathogen defense, stress tolerance and reproductive development. Unlike in animals each plant cell is capable of producing hormones. Went and Thimann coined the term "phytohormone" and used it in the title of their 1937 book.

<span class="mw-page-title-main">Auxin</span> Plant hormone

Auxins are a class of plant hormones with some morphogen-like characteristics. Auxins play a cardinal role in coordination of many growth and behavioral processes in plant life cycles and are essential for plant body development. The Dutch biologist Frits Warmolt Went first described auxins and their role in plant growth in the 1920s. Kenneth V. Thimann became the first to isolate one of these phytohormones and to determine its chemical structure as indole-3-acetic acid (IAA). Went and Thimann co-authored a book on plant hormones, Phytohormones, in 1937.

<span class="mw-page-title-main">Plant physiology</span> Subdiscipline of botany

Plant physiology is a subdiscipline of botany concerned with the functioning, or physiology, of plants. Closely related fields include plant morphology, plant ecology, phytochemistry, cell biology, genetics, biophysics and molecular biology.

<span class="mw-page-title-main">Abscisic acid</span> Plant hormone

Abscisic acid is a plant hormone. ABA functions in many plant developmental processes, including seed and bud dormancy, the control of organ size and stomatal closure. It is especially important for plants in the response to environmental stresses, including drought, soil salinity, cold tolerance, freezing tolerance, heat stress and heavy metal ion tolerance.

<span class="mw-page-title-main">Genistein</span> Chemical compound

Genistein (C15H10O5) is a naturally occurring compound that structurally belongs to a class of compounds known as isoflavones. It is described as an angiogenesis inhibitor and a phytoestrogen.

<span class="mw-page-title-main">Guard cell</span> Paired cells that control the stomatal aperture

Guard cells are specialized plant cells in the epidermis of leaves, stems and other organs that are used to control gas exchange. They are produced in pairs with a gap between them that forms a stomatal pore. The stomatal pores are largest when water is freely available and the guard cells become turgid, and closed when water availability is critically low and the guard cells become flaccid. Photosynthesis depends on the diffusion of carbon dioxide (CO2) from the air through the stomata into the mesophyll tissues. Oxygen (O2), produced as a byproduct of photosynthesis, exits the plant via the stomata. When the stomata are open, water is lost by evaporation and must be replaced via the transpiration stream, with water taken up by the roots. Plants must balance the amount of CO2 absorbed from the air with the water loss through the stomatal pores, and this is achieved by both active and passive control of guard cell turgor pressure and stomatal pore size.

Phytotoxins are substances that are poisonous or toxic to the growth of plants. Phytotoxic substances may result from human activity, as with herbicides, or they may be produced by plants, by microorganisms, or by naturally occurring chemical reactions.

<span class="mw-page-title-main">Brassinolide</span> Chemical compound

Brassinolide is a plant hormone. The first isolated brassinosteroid, it was discovered when it was shown that pollen from rapeseed could promote stem elongation and cell division. The biologically active component was isolated and named brassinolide.

<span class="mw-page-title-main">1-Methylcyclopropene</span> Synthetic plant growth regulator blocking the effects of ethylene (competitive inhibitor)

1-Methylcyclopropene (1-MCP) is a cyclopropene derivative used as a synthetic plant growth regulator. It is structurally related to the natural plant hormone ethylene and it is used commercially to slow down the ripening of fruit and to help maintain the freshness of cut flowers.

Biotic stress is stress that occurs as a result of damage done to an organism by other living organisms, such as bacteria, viruses, fungi, parasites, beneficial and harmful insects, weeds, and cultivated or native plants. It is different from abiotic stress, which is the negative impact of non-living factors on the organisms such as temperature, sunlight, wind, salinity, flooding and drought. The types of biotic stresses imposed on an organism depend the climate where it lives as well as the species' ability to resist particular stresses. Biotic stress remains a broadly defined term and those who study it face many challenges, such as the greater difficulty in controlling biotic stresses in an experimental context compared to abiotic stress.

<span class="mw-page-title-main">Phaseic acid</span> Chemical compound

Phaseic acid is a terpenoid catabolite of abscisic acid. Like abscisic acid, it is a plant hormone associated with photosynthesis arrest and abscission.

Sean R. Cutler is a professor of plant cell biology at the University of California, Riverside. In 2009 Cutler showed how abscisic acid, a naturally-produced plant stress hormone, helps plants survive by inhibiting their growth in times of drought. Cutler also discovered pyrabactin, a synthetic chemical that mimics abscisic acid. His research was named by Science magazine as one of the top 10 breakthroughs of the year. In 2018, he was elected to the National Academy of Sciences.

Early twenty-first century pesticide research has focused on developing molecules that combine low use rates and that are more selective, safer, resistance-breaking and cost-effective. Obstacles include increasing pesticide resistance and an increasingly stringent regulatory environment.

<span class="mw-page-title-main">Orthogonal ligand-protein pair</span>

Orthogonal ligand-protein pairs are a protein-ligand binding pair made to be independent of the original binding pair. This is done by taking a mutant protein, which is activated by a different ligand. The intention here is that the orthogonal ligand will not interact with the original protein. The original protein will also be designed to not interact with the orthogonal ligand in certain cases.

Jian-Kang Zhu is a plant scientist, researcher and academic. He is a Senior Principal Investigator in the Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences (CAS). He is also the Academic Director of CAS Center of Excellence in Plant Sciences.

<span class="mw-page-title-main">Ethylene (plant hormone)</span> Alkene gas naturally regulating the plant growth

Ethylene (CH
2
=CH
2
) is an unsaturated hydrocarbon gas (alkene) acting as a naturally occurring plant hormone. It is the simplest alkene gas and is the first gas known to act as hormone. It acts at trace levels throughout the life of the plant by stimulating or regulating the ripening of fruit, the opening of flowers, the abscission (or shedding) of leaves and, in aquatic and semi-aquatic species, promoting the 'escape' from submergence by means of rapid elongation of stems or leaves. This escape response is particularly important in rice farming. Commercial fruit-ripening rooms use "catalytic generators" to make ethylene gas from a liquid supply of ethanol. Typically, a gassing level of 500 to 2,000 ppm is used, for 24 to 48 hours. Care must be taken to control carbon dioxide levels in ripening rooms when gassing, as high temperature ripening (20 °C; 68 °F) has been seen to produce CO2 levels of 10% in 24 hours.

Hydraulic signals in plants are detected as changes in the organism's water potential that are caused by environmental stress like drought or wounding. The cohesion and tension properties of water allow for these water potential changes to be transmitted throughout the plant.

Chemical defenses in <i>Cannabis</i> Defense of Cannabis plant from pathogens

Cannabis (/ˈkænəbɪs/) is commonly known as marijuana or hemp and has two known strains: Cannabis sativa and Cannabis indica, both of which produce chemicals to deter herbivory. The chemical composition includes specialized terpenes and cannabinoids, mainly tetrahydrocannabinol (THC), and cannabidiol (CBD). These substances play a role in defending the plant from pathogens including insects, fungi, viruses and bacteria. THC and CBD are stored mostly in the trichomes of the plant, and can cause psychological and physical impairment in the user, via the endocannabinoid system and unique receptors. THC increases dopamine levels in the brain, which attributes to the euphoric and relaxed feelings cannabis provides. As THC is a secondary metabolite, it poses no known effects towards plant development, growth, and reproduction. However, some studies show secondary metabolites such as cannabinoids, flavonoids, and terpenes are used as defense mechanisms against biotic and abiotic environmental stressors.

References

  1. 1 2 Pyrabactin, Sigma-Aldrich
  2. Organic compound comes to the aid of thirsty plants, Royal Society of Chemistry, 1 May 2009
  3. Pyrabactin – American Chemical Society
  4. Synthetic chemical offers solution for crops facing drought
  5. Growing drought-tolerant crops inching forward (Science Blog)
  6. Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M; Kovach, Amanda; Tham, Fook S; Cutler, Sean R; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H Eric (September 2010). "Identification and mechanism of ABA receptor antagonism". Nature Structural & Molecular Biology. 17 (9): 1102–1108. doi:10.1038/nsmb.1887. ISSN   1545-9993. PMC   2933329 . PMID   20729862.