Pyrrolostatin

Last updated
Pyrrolostatin
Pyrrolostatin.svg
Names
IUPAC name
4-[(2E)-3,7-Dimethylocta-2,6-dienyl]-1H-pyrrole-2-carboxylic acid [1]
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C15H21NO2/c1-11(2)5-4-6-12(3)7-8-13-9-14(15(17)18)16-10-13/h5,7,9-10,16H,4,6,8H2,1-3H3,(H,17,18)/b12-7+
    Key: UEQIBCOZMSTCSW-KPKJPENVSA-N
  • CC(=CCC/C(=C/CC1=CNC(=C1)C(=O)O)/C)C
Properties
C15H21NO2
Molar mass 247.338 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Pyrrolostatin is a lipid peroxidation inhibitor with the molecular formula C15H21NO2 which has been isolated from the bacterium Streptomyces chrestomyceticus . [1] [2]

Related Research Articles

<span class="mw-page-title-main">Nonactin</span> Chemical compound

Nonactin is a member of a family of naturally occurring cyclic ionophores known as the macrotetrolide antibiotics. The other members of this homologous family are monactin, dinactin, trinactin and tetranactin which are all neutral ionophoric substances and higher homologs of nonactin. Collectively, this class is known as the nactins. Nonactin is soluble in methanol, dichloromethane, ethyl acetate and DMSO, but insoluble in water.

<span class="mw-page-title-main">Nystatin</span> Pharmaceutical drug

Nystatin, sold under the brandname Mycostatin among others, is an antifungal medication. It is used to treat Candida infections of the skin including diaper rash, thrush, esophageal candidiasis, and vaginal yeast infections. It may also be used to prevent candidiasis in those who are at high risk. Nystatin may be used by mouth, in the vagina, or applied to the skin.

<i>Streptomyces</i> Genus of bacteria

Streptomyces is the largest genus of Actinomycetota and the type genus of the family Streptomycetaceae. Over 500 species of Streptomyces bacteria have been described. As with the other Actinomycetota, streptomycetes are gram-positive, and have genomes with high GC content. Found predominantly in soil and decaying vegetation, most streptomycetes produce spores, and are noted for their distinct "earthy" odor that results from production of a volatile metabolite, geosmin.

<span class="mw-page-title-main">Glycopeptide antibiotic</span> Class of antibiotic drugs

Glycopeptide antibiotics are a class of drugs of microbial origin that are composed of glycosylated cyclic or polycyclic nonribosomal peptides. Significant glycopeptide antibiotics include the anti-infective antibiotics vancomycin, teicoplanin, telavancin, ramoplanin and decaplanin, corbomycin, complestatin and the antitumor antibiotic bleomycin. Vancomycin is used if infection with methicillin-resistant Staphylococcus aureus (MRSA) is suspected.

<span class="mw-page-title-main">Lincosamides</span>

Lincosamides are a class of antibiotics, which include lincomycin, clindamycin, and pirlimycin.

Triacsin C is an inhibitor of long fatty acyl CoA synthetase that has been isolated from Streptomyces aureofaciens. It blocks β-cell apoptosis, induced by fatty acids (lipoapoptosis) in a rat model of obesity. In addition, it blocks the de novo synthesis of triglycerides, diglycerides, and cholesterol esters, thus interfering with lipid metabolism.

<span class="mw-page-title-main">Platensimycin</span> Chemical compound

Platensimycin, a metabolite of Streptomyces platensis, is an antibiotic, which act by blocking enzymes.

<span class="mw-page-title-main">Monensin</span> Chemical compound

Monensin is a polyether antibiotic isolated from Streptomyces cinnamonensis. It is widely used in ruminant animal feeds.

Topoisomerase inhibitors are chemical compounds that block the action of topoisomerases, which are broken into two broad subtypes: type I topoisomerases (TopI) and type II topoisomerases (TopII). Topoisomerase plays important roles in cellular reproduction and DNA organization, as they mediate the cleavage of single and double stranded DNA to relax supercoils, untangle catenanes, and condense chromosomes in eukaryotic cells. Topoisomerase inhibitors influence these essential cellular processes. Some topoisomerase inhibitors prevent topoisomerases from performing DNA strand breaks while others, deemed topoisomerase poisons, associate with topoisomerase-DNA complexes and prevent the re-ligation step of the topoisomerase mechanism. These topoisomerase-DNA-inhibitor complexes are cytotoxic agents, as the un-repaired single- and double stranded DNA breaks they cause can lead to apoptosis and cell death. Because of this ability to induce apoptosis, topoisomerase inhibitors have gained interest as therapeutics against infectious and cancerous cells.

<span class="mw-page-title-main">Ramoplanin</span> Antibiotic chemical

Ramoplanin (INN) is a glycolipodepsipeptide antibiotic drug derived from strain ATCC 33076 of Actinoplanes. It is effective against Gram-positive bacteria.

<span class="mw-page-title-main">Clavam</span> Class of antibiotics

Clavams are a class of antibiotics. This antibiotic is derived from Streptomyces clavuligerus NRRL 3585. Clavam is produced to form a new β-lactam antibiotic. This class is divided into the clavulanic acid class and the 5S clavams class. Clavulanic acid is a broad-spectrum antibiotic and 5S clavams may have anti-fungal properties. They are similar to penams, but with an oxygen substituted for the sulfur. Thus, they are also known as oxapenams.

<span class="mw-page-title-main">Carbomycin</span> Chemical compound

Carbomycin, also known as magnamycin, is a colorless, optically active crystalline macrolide antibiotic with the molecular formula C42H67NO16. It is derived from the bacterium Streptomyces halstedii and active in inhibiting the growth of Gram-positive bacteria and "certain Mycoplasma strains." Its structure was first proposed by Robert Woodward in 1957 and was subsequently corrected in 1965.

Streptomyces isolates have yielded the majority of human, animal, and agricultural antibiotics, as well as a number of fundamental chemotherapy medicines. Streptomyces is the largest antibiotic-producing genus of Actinomycetota, producing chemotherapy, antibacterial, antifungal, antiparasitic drugs, and immunosuppressants. Streptomyces isolates are typically initiated with the aerial hyphal formation from the mycelium.

Teixobactin is a peptide-like secondary metabolite of some species of bacteria, that kills some gram-positive bacteria. It appears to belong to a new class of antibiotics, and harms bacteria by binding to lipid II and lipid III, important precursor molecules for forming the cell wall.

<span class="mw-page-title-main">Nosiheptide</span> Chemical compound

Nosiheptide is a thiopeptide antibiotic produced by the bacterium Streptomyces actuosus.

Streptomyces chrestomyceticus is a bacterium species from the genus of Streptomyces. Streptomyces chrestomyceticus produces lycopene, pyrrolostatin, paromomycin, aminocidin, aminosidin, neomycin E and neomycin F.

Streptomyces halstedii is a bacterium species from the genus of Streptomyces which has been isolated from deeper soil layers. Streptomyces halstedii produces magnamycin B, vicenistatin deltamycin A2, deltamycin A3, bafilomycin B1 and bafilomycin C1. Streptomyces halstedii also produces complex antifungal antibiotics like oligomycins and the antibiotics anisomycin and sinefungin.

Lactimidomycin is a glutarimide antibiotic derived from the bacteria Streptomyces amphibiosporus. It has antifungal, antiviral and anti-cancer properties, acting as a direct inhibitor of protein translation in ribosomes. Antiviral activity is seen against a variety of RNA viruses including flaviviruses such as dengue fever, Kunjin virus and Modoc virus, as well as vesicular stomatitis virus and poliovirus. As lactimidomycin is a natural product containing an unusual unsaturated 12-membered lactone ring, it has been the subject of numerous total synthesis approaches.

<span class="mw-page-title-main">Nucleocidin</span> Chemical compound

Nucleocidin is a fluorine-containing nucleoside produced by Streptomyces calvus.

<span class="mw-page-title-main">Arylomycin</span> Group of chemical compounds

The arylomycins are a class of antibiotics initially isolated from a soil sample obtained in Cape Coast, Ghana. In this initial isolation, two families of closely related arylomycins, A and B, were identified. The family of glycosylated arylomycin C lipopeptides were subsequently isolated from a Streptomyces culture in a screen for inhibitors of bacterial signal peptidase. The initially isolated arylomycins have a limited spectrum of activity against Gram-positive bacteria, including Staphylococcus aureus and Streptococcus pneumoniae. The only activity against Gram-negative bacteria was seen in strains with a compromised outer membrane.

References

  1. 1 2 "Pyrrolostatin". Pubchem.ncbi.NLM.nih.gov.
  2. Kato, Shinichiro; Shindo, Kazutoshi; Kawai, Hiroyuki; Odagawa, Atsuo; Matsuoka, Michiko; Mochizuki, Junichiro (1993). "Pyrrolostatin, a novel lipid peroxidation inhibitor from Streptomyces chrestomyceticus. Taxonomy, fermentation, isolation, structure elucidation and biological properties". The Journal of Antibiotics. 46 (6): 892–899. doi: 10.7164/antibiotics.46.892 . PMID   8344870.

Further reading