QSR J1819+3845

Last updated
QSO J1819+3845
Observation data (Epoch J2000)
Constellation Hercules
Right ascension 18h 19m 26.55s
Declination +38° 45 01.8 [1]
Redshift 0.54 [1]
Type EmG [1]
Notable featuresMost variable quasar radio source
Other designations
QSR J1819+3845, QSO J1819+3845, QSO B1817+387, QSR B1817+387, QSR 1817+387, QSO 1817+387, MITG J181925+3844
See also: Quasar, List of quasars

QSR J1819+3845 is a quasar notable for being the most variable known extragalactic radio source.[ when? ] This quasar shows variations of factors of four or more on a timescale of hours. [2]

The variations have been shown to be due to scattering in the interstellar medium (ISM). This quasar furnished the elegant proof [3] of the role of scattering due to the ISM, or interstellar scintillation, by showing a time delay in arrival between the signal at widely spaced telescopes (in the US and Netherlands).

Interstellar scintillation is the observed effect of interference and refractive phenomena due to the ISM. It can be thought of as the ISM focusing and defocusing the radio waves from the source, producing a pattern of dark and bright patches, rather like light and dark patches at the bottom of a fish pond. As the Earth moves through these patches we observe a temporal variation in the radio intensity (like a fish swimming through light and dark patches).

If the standard theory of diffractive scintillation is assumed to apply, ground-based radio traces would seem to require that J1819+3845 contains a component that must be less than about 5 microarcseconds across; this would require its temperature to be in excess of 1015 K. However, the scintillation may perhaps be interpreted as being due to an unusual piece of intervening interstellar medium.

Nonetheless, its importance lies in having proved the importance of interstellar scintillation in creating the observed variations in brightness in at least some quasars, which had been the subject of some discussion.

Related Research Articles

Interstellar cloud Accumulation of gas, plasma, and dust in space

An interstellar cloud is generally an accumulation of gas, plasma, and dust in our and other galaxies. Put differently, an interstellar cloud is a denser-than-average region of the interstellar medium (ISM), the matter and radiation that exists in the space between the star systems in a galaxy. Depending on the density, size, and temperature of a given cloud, its hydrogen can be neutral, making an H I region; ionized, or plasma making it an H II region; or molecular, which are referred to simply as molecular clouds, or sometime dense clouds. Neutral and ionized clouds are sometimes also called diffuse clouds. An interstellar cloud is formed by the gas and dust particles from a red giant in its later life.

Quasar Active galactic nucleus containing a supermassive black hole

A quasar is an extremely luminous active galactic nucleus (AGN), powered by a supermassive black hole, with mass ranging from millions to tens of billions of solar masses, surrounded by a gaseous accretion disc. Gas in the disc falling towards the black hole heats up because of friction and releases energy in the form of electromagnetic radiation. The radiant energy of quasars is enormous; the most powerful quasars have luminosities thousands of times greater than that of a galaxy such as the Milky Way. Usually, quasars are categorized as a subclass of the more general category of AGN. The redshifts of quasars are of cosmological origin.

Luminosity Measurement of radiant electromagnetic power emitted by an object

Luminosity is an absolute measure of radiated electromagnetic power (light), the radiant power emitted by a light-emitting object over time. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a star, galaxy, or other astronomical object.

Interstellar medium Matter and radiation in the space between the star systems in a galaxy

In astronomy, the interstellar medium is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstellar space and blends smoothly into the surrounding intergalactic space. The energy that occupies the same volume, in the form of electromagnetic radiation, is the interstellar radiation field.

Non-standard cosmology Models of the universe which deviate from then-current scientific consensus

A non-standard cosmology is any physical cosmological model of the universe that was, or still is, proposed as an alternative to the then-current standard model of cosmology. The term non-standard is applied to any theory that does not conform to the scientific consensus. Because the term depends on the prevailing consensus, the meaning of the term changes over time. For example, hot dark matter would not have been considered non-standard in 1990, but would be in 2010. Conversely, a non-zero cosmological constant resulting in an accelerating universe would have been considered non-standard in 1990, but is part of the standard cosmology in 2010.

Radio galaxy Type of active galaxy that is very luminous at radio wavelengths

A radio galaxy is a galaxy with giant regions of radio emission extending well beyond its visible structure. These energetic radio lobes are powered by jets from its active galactic nucleus. They have luminousities at radio wavelengths up to 1039 W between 10 MHz and 100 GHz. The radio emission is due to the synchrotron process. The observed structure in radio emission is determined by the interaction between twin jets and the external medium, modified by the effects of relativistic beaming. The host galaxies are almost exclusively large elliptical galaxies. Radio-loud active galaxies can be detected at large distances, making them valuable tools for observational cosmology. Recently, much work has been done on the effects of these objects on the intergalactic medium, particularly in galaxy groups and clusters.

Twinkling Variation in brightness and the position of stars due to atmospheric refraction

Twinkling, also called scintillation, is a generic term for variations in apparent brightness, colour, or position of a distant luminous object viewed through a medium. If the object lies outside the Earth's atmosphere, as in the case of stars and planets, the phenomenon is termed astronomical scintillation; for objects within the atmosphere, the phenomenon is termed terrestrial scintillation. As one of the three principal factors governing astronomical seeing, atmospheric scintillation is defined as variations in illuminance only.

Blazar Very compact quasi-stellar radio source

A blazar is an active galactic nucleus (AGN) with a relativistic jet directed very nearly towards an observer. Relativistic beaming of electromagnetic radiation from the jet makes blazars appear much brighter than they would be if the jet were pointed in a direction away from Earth. Blazars are powerful sources of emission across the electromagnetic spectrum and are observed to be sources of high-energy gamma ray photons. Blazars are highly variable sources, often undergoing rapid and dramatic fluctuations in brightness on short timescales. Some blazar jets exhibit apparent superluminal motion, another consequence of material in the jet traveling toward the observer at nearly the speed of light.

Reionization Process that caused matter to reionize early in the history of the Universe

In the fields of Big Bang theory and cosmology, reionization is the process that caused matter in the universe to reionize after the lapse of the "dark ages".

Pulsar Highly magnetized, rapidly rotating neutron star

A pulsar is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Earth, and is responsible for the pulsed appearance of emission. Neutron stars are very dense and have short, regular rotational periods. This produces a very precise interval between pulses that ranges from milliseconds to seconds for an individual pulsar. Pulsars are one of the candidates for the source of ultra-high-energy cosmic rays.

In astronomy, extinction is the absorption and scattering of electromagnetic radiation by dust and gas between an emitting astronomical object and the observer. Interstellar extinction was first documented as such in 1930 by Robert Julius Trumpler. However, its effects had been noted in 1847 by Friedrich Georg Wilhelm von Struve, and its effect on the colors of stars had been observed by a number of individuals who did not connect it with the general presence of galactic dust. For stars that lie near the plane of the Milky Way and are within a few thousand parsecs of the Earth, extinction in the visual band of frequencies is roughly 1.8 magnitudes per kiloparsec.

Cosmic dust Dust floating in space

Cosmic dust, also called extraterrestrial dust or space dust, is dust which exists in outer space, or has fallen on Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm. Larger particles are called meteoroids. Cosmic dust can be further distinguished by its astronomical location: intergalactic dust, interstellar dust, interplanetary dust and circumplanetary dust.

International Ultraviolet Explorer Astronomical observatory satellite

International Ultraviolet Explorer, was the first space observatory primarily designed to take ultraviolet (UV) electromagnetic spectrum. The satellite was a collaborative project between NASA, the United Kingdom's Science and Engineering Research Council and the European Space Agency (ESA), formerly European Space Research Organisation (ESRO). The mission was first proposed in early 1964, by a group of scientists in the United Kingdom, and was launched on 26 January 1978 aboard a NASA Thor-Delta 2914 launch vehicle. The mission lifetime was initially set for 3 years, but in the end it lasted 18 years, with the satellite being shut down in 1996. The switch-off occurred for financial reasons, while the telescope was still functioning at near original efficiency.

Ap and Bp stars are chemically peculiar stars of types A and B which show overabundances of some metals, such as strontium, chromium and europium. In addition, larger overabundances are often seen in praseodymium and neodymium. These stars have a much slower rotation than normal for A and B-type stars, although some exhibit rotation velocities up to about 100 kilometers per second.

Cyclopropenylidene Chemical compound

Cyclopropenylidene, or c-C3H2, is a partially aromatic molecule belonging to a highly reactive class of organic molecules known as carbenes. On Earth, cyclopropenylidene is only seen in the laboratory due to its reactivity. However, cyclopropenylidene is found in significant concentrations in the interstellar medium (ISM) and on Saturn's moon Titan. Its C2v symmetric isomer, propadienylidene (CCCH2) is also found in the ISM, but with abundances about an order of magnitude lower. A third C2 symmetric isomer, propargylene (HCCCH), has not yet been detected in the ISM, most likely due to its low dipole moment.

In astronomy, interplanetary scintillation refers to random fluctuations in the intensity of radio waves of celestial origin, on the timescale of a few seconds. It is analogous to the twinkling one sees looking at stars in the sky at night, but in the radio part of the electromagnetic spectrum rather than the visible one. Interplanetary scintillation is the result of radio waves traveling through fluctuations in the density of the electron and protons that make up the solar wind.

Pushchino Radio Astronomy Observatory Observatory

Pushchino Radio Astronomy Observatory is a Russian radio astronomy observatory. It was developed by Lebedev Physical Institute (LPI), Russian Academy of Sciences within a span of twenty years. It was founded on April 11, 1956, and currently occupies 70 000 square meters.

Starlight Light from the stars

Starlight is the light emitted by stars. It typically refers to visible electromagnetic radiation from stars other than the Sun, observable from Earth at night, although a component of starlight is observable from Earth during daytime.

Yashwant Gupta is an Indian astrophysicist and a professor at the National Centre for Radio Astrophysics (NCRA) of the Tata Institute of Fundamental Research. He is currently a Distinguished Professor and also the Centre Director at NCRA. Known for his research on pulsars, Gupta is a member of the International Astronomical Union. He is reported to have contributed to the conceptualization and commissioning of the Giant Metrewave Radio Telescope (GMRT) in Pune. He also led the major upgrade of GMRT that was carried out during 2013 to 2019. His studies have been documented by way of a number of articles and Google Scholar, an online repository of scientific articles has listed 165 of them. He has also delivered several plenary speeches or keynote addresses and the speech on The upgraded GMRT : Current Status and Future Prospects at the University of California, Berkeley in December 2015 was one among them. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, for his contributions to physical sciences in 2007.

ULAS J1342+0928 Second most distant quasar known located in the constellation Boötes

ULAS J1342+0928 is the second-most distant known quasar detected and contains the second-most distant and oldest known supermassive black hole, at a reported redshift of z = 7.54. The ULAS J1342+0928 quasar is located in the Boötes constellation. The related supermassive black hole is reported to be "800 million times the mass of the Sun".

References

  1. 1 2 3 Simbad
  2. Dennett-Thorpe J, de Bruyn AG. (2000). "The Discovery of a Microarcsecond Quasar: J1819+384". The Astrophysical Journal . 2000 Feb 1; 529 (2), L65-L68.
  3. Dennett-Thorpe J, de Bruyn AG. (2002). "Interstellar scintillation as the origin of the rapid radio variability of the quasar J1819+3845". Nature. 2002 Jan 3; 415(6867), 57-60.