RAP1A

Last updated
RAP1A
Protein RAP1A PDB 1c1y.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases RAP1A , C21KG, G-22K, KREV-1, KREV1, RAP1, SMGP21, member of RAS oncogene family
External IDs OMIM: 179520 MGI: 97852 HomoloGene: 2162 GeneCards: RAP1A
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_145541

RefSeq (protein)

NP_001010935
NP_001278825
NP_002875
NP_001357145
NP_001357146

Contents

NP_663516

Location (UCSC) Chr 1: 111.54 – 111.72 Mb Chr 3: 105.63 – 105.71 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Ras-related protein Rap-1A is a protein that in humans is encoded by the RAP1A gene. [5]

Function

The product of this gene belongs to the family of Ras-related proteins. These proteins share approximately 50% amino acid identity with the classical RAS proteins and have numerous structural features in common. The most striking difference between RAP proteins and RAS proteins resides in their 61st amino acid: glutamine in RAS is replaced by threonine in RAP proteins. The product of this gene counteracts the mitogenic function of RAS because it can interact with RAS GAPs and RAF in a competitive manner. Two transcript variants encoding the same protein have been identified for this gene. [6]

Interactions

RAP1A has been shown to interact with:

Related Research Articles

c-Raf Mammalian protein found in Homo sapiens

RAF proto-oncogene serine/threonine-protein kinase, also known as proto-oncogene c-RAF or simply c-Raf or even Raf-1, is an enzyme that in humans is encoded by the RAF1 gene. The c-Raf protein is part of the ERK1/2 pathway as a MAP kinase (MAP3K) that functions downstream of the Ras subfamily of membrane associated GTPases. C-Raf is a member of the Raf kinase family of serine/threonine-specific protein kinases, from the TKL (Tyrosine-kinase-like) group of kinases.

<span class="mw-page-title-main">RHOB</span> Protein-coding gene in the species Homo sapiens

Ras homolog gene family, member B, also known as RHOB, is a protein which in humans is encoded by the RHOB gene.

<span class="mw-page-title-main">TSC2</span> Mammalian protein found in Homo sapiens

Tuberous Sclerosis Complex 2 (TSC2), also known as Tuberin, is a protein that in humans is encoded by the TSC2 gene.

<span class="mw-page-title-main">Afadin</span> Protein-coding gene in the species Homo sapiens

Afadin is a protein that in humans is encoded by the AFDN gene.

<span class="mw-page-title-main">RAP1GAP</span> Protein-coding gene in the species Homo sapiens

Rap1 GTPase-activating protein 1 is an enzyme that in humans is encoded by the RAP1GAP gene.

<span class="mw-page-title-main">RAB11A</span> Protein-coding gene in the species Homo sapiens

Ras-related protein Rab-11A is a protein that in humans is encoded by the RAB11A gene.

<span class="mw-page-title-main">RHEB</span> Protein-coding gene in the species Homo sapiens

RHEB also known as Ras homolog enriched in brain (RHEB) is a GTP-binding protein that is ubiquitously expressed in humans and other mammals. The protein is largely involved in the mTOR pathway and the regulation of the cell cycle.

<span class="mw-page-title-main">RCC1</span> Protein-coding gene in the species Homo sapiens

Regulator of chromosome condensation 1, also known as RCC1, Ran guanine nucleotide exchange factor and RanGEF, is the name for a human gene and protein.

<span class="mw-page-title-main">RALA</span> Protein-coding gene in the species Homo sapiens

Ras-related protein Ral-A (RalA) is a protein that in humans is encoded by the RALA gene on chromosome 7. This protein is one of two paralogs of the Ral protein, the other being RalB, and part of the Ras GTPase family. RalA functions as a molecular switch to activate a number of biological processes, majorly cell division and transport, via signaling pathways. Its biological role thus implicates it in many cancers.

<span class="mw-page-title-main">RALGDS</span> Protein-coding gene in the species Homo sapiens

Ral guanine nucleotide dissociation stimulator is a protein that is encoded by the RALGDS gene in humans.

<span class="mw-page-title-main">RRAS</span> Protein-coding gene in the species Homo sapiens

Ras-related protein R-Ras is a protein that in humans is encoded by the RRAS gene.

<span class="mw-page-title-main">RAP2A</span> Protein-coding gene in the species Homo sapiens

Ras-related protein Rap-2a is a protein that in humans is encoded by the RAP2A gene. RAP2A is a member of the Ras-related protein family.

<span class="mw-page-title-main">Rnd1</span> Protein-coding gene in the species Homo sapiens

Rnd1 is a small signaling G protein, and is a member of the Rnd subgroup of the Rho family of GTPases. It is encoded by the gene RND1.

<span class="mw-page-title-main">RAP2B</span> Protein-coding gene in the species Homo sapiens

Ras-related protein Rap-2b is a protein that in humans is encoded by the RAP2B gene. RAP2B belongs to the Ras-related protein family.

<span class="mw-page-title-main">MRAS</span> Protein

Ras-related protein M-Ras, also known as muscle RAS oncogene homolog and R-Ras3, is a protein that in humans is encoded by the MRAS gene on chromosome 3. It is ubiquitously expressed in many tissues and cell types. This protein functions as a signal transducer for a wide variety of signaling pathways, including those promoting neural and bone formation as well as tumor growth. The MRAS gene also contains one of 27 SNPs associated with increased risk of coronary artery disease.

<span class="mw-page-title-main">PDE6D</span> Protein-coding gene in the species Homo sapiens

Retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta is an enzyme that in humans is encoded by the PDE6D gene. PDE6D was originally identified as a fourth subunit of rod cell-specific cGMP phosphodiesterase (PDE). The precise function of PDE delta subunit in the rod specific GMP-PDE complex is unclear. In addition, PDE delta subunit is not confined to photoreceptor cells but is widely distributed in different tissues. PDE delta subunit is thought to be a specific soluble transport factor for certain prenylated proteins and Arl2-GTP a regulator of PDE-mediated transport.

<span class="mw-page-title-main">SH2D3C</span> Protein-coding gene in the species Homo sapiens

SH2 domain containing 3C, also known as SH2D3C, is a protein that in humans is encoded by the SH2D3C gene.

<span class="mw-page-title-main">RAPGEF2</span> Protein-coding gene in the species Homo sapiens

Rap guanine nucleotide exchange factor 2 is a protein that in humans is encoded by the RAPGEF2 gene.

<span class="mw-page-title-main">RRAGA</span> Protein-coding gene in the species Homo sapiens

Ras-related GTP-binding protein A is a protein that in humans is encoded by the RRAGA gene.

<span class="mw-page-title-main">RAPGEF5</span> Protein-coding gene in the species Homo sapiens

Rap guanine nucleotide exchange factor 5 is a protein that in humans is encoded by the RAPGEF5 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000116473 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000068798 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Kawata M, Matsui Y, Kondo J, Hishida T, Teranishi Y, Takai Y (Dec 1988). "A novel small molecular weight GTP-binding protein with the same putative effector domain as the ras proteins in bovine brain membranes. Purification, determination of primary structure, and characterization". The Journal of Biological Chemistry. 263 (35): 18965–71. doi: 10.1016/S0021-9258(18)37376-9 . PMID   3143720.
  6. "Entrez Gene: RAP1A RAP1A, member of RAS oncogene family".
  7. Han L, Colicelli J (Mar 1995). "A human protein selected for interference with Ras function interacts directly with Ras and competes with Raf1". Molecular and Cellular Biology. 15 (3): 1318–23. doi:10.1128/mcb.15.3.1318. PMC   230355 . PMID   7862125.
  8. Nassar N, Horn G, Herrmann C, Scherer A, McCormick F, Wittinghofer A (Jun 1995). "The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue". Nature. 375 (6532): 554–60. Bibcode:1995Natur.375..554N. doi:10.1038/375554a0. PMID   7791872. S2CID   4347807.
  9. Hu CD, Kariya K, Okada T, Qi X, Song C, Kataoka T (Jan 1999). "Effect of phosphorylation on activities of Rap1A to interact with Raf-1 and to suppress Ras-dependent Raf-1 activation". The Journal of Biological Chemistry. 274 (1): 48–51. doi: 10.1074/jbc.274.1.48 . PMID   9867809.
  10. Okada T, Hu CD, Jin TG, Kariya K, Yamawaki-Kataoka Y, Kataoka T (Sep 1999). "The strength of interaction at the Raf cysteine-rich domain is a critical determinant of response of Raf to Ras family small GTPases". Molecular and Cellular Biology. 19 (9): 6057–64. doi:10.1128/mcb.19.9.6057. PMC   84512 . PMID   10454553.
  11. 1 2 Boettner B, Govek EE, Cross J, Van Aelst L (Aug 2000). "The junctional multidomain protein AF-6 is a binding partner of the Rap1A GTPase and associates with the actin cytoskeletal regulator profilin". Proceedings of the National Academy of Sciences of the United States of America. 97 (16): 9064–9. Bibcode:2000PNAS...97.9064B. doi: 10.1073/pnas.97.16.9064 . PMC   16822 . PMID   10922060.
  12. Nancy V, Callebaut I, El Marjou A, de Gunzburg J (Apr 2002). "The delta subunit of retinal rod cGMP phosphodiesterase regulates the membrane association of Ras and Rap GTPases". The Journal of Biological Chemistry. 277 (17): 15076–84. doi: 10.1074/jbc.M109983200 . PMID   11786539.
  13. Hanzal-Bayer M, Renault L, Roversi P, Wittinghofer A, Hillig RC (May 2002). "The complex of Arl2-GTP and PDE delta: from structure to function". The EMBO Journal. 21 (9): 2095–106. doi:10.1093/emboj/21.9.2095. PMC   125981 . PMID   11980706.
  14. Nancy V, Wolthuis RM, de Tand MF, Janoueix-Lerosey I, Bos JL, de Gunzburg J (Mar 1999). "Identification and characterization of potential effector molecules of the Ras-related GTPase Rap2". The Journal of Biological Chemistry. 274 (13): 8737–45. doi: 10.1074/jbc.274.13.8737 . PMID   10085114.
  15. Rebhun JF, Castro AF, Quilliam LA (Nov 2000). "Identification of guanine nucleotide exchange factors (GEFs) for the Rap1 GTPase. Regulation of MR-GEF by M-Ras-GTP interaction". The Journal of Biological Chemistry. 275 (45): 34901–8. doi: 10.1074/jbc.M005327200 . PMID   10934204.
  16. Castro AF, Rebhun JF, Clark GJ, Quilliam LA (Aug 2003). "Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner". The Journal of Biological Chemistry. 278 (35): 32493–6. doi: 10.1074/jbc.C300226200 . PMID   12842888.
  17. Yamamoto Y, Jones KA, Mak BC, Muehlenbachs A, Yeung RS (Aug 2002). "Multicompartmental distribution of the tuberous sclerosis gene products, hamartin and tuberin". Archives of Biochemistry and Biophysics. 404 (2): 210–7. doi:10.1016/s0003-9861(02)00300-4. PMID   12147258.