RTCM SC-104 is a communication protocol for sending differential GPS (DGPS) to a GPS receiver from a secondary source like a radio receiver. The standard is named for the Special Committee 104 of the Radio Technical Commission for Maritime Services (RTCM) that created it. The format does not define the source of the messages and has been used with systems as varied as longwave marine radio, communications satellite broadcasts, and internet distribution.
The first widely used version of the format was released in 1990 and was based on the 30-bit long packet used by the GPS satellites, known as a "frame". Each message started with standardized two-frame header and then one or more data frames following. The frames were designed to be similar to GPS to make integration in GPS receivers easier, but had the disadvantage of having low channel efficiency and limiting the number of messages that could be sent in a given time.
A completely new message format was introduced in 2003 for version 3 of the standard which used a variable-length format to improve efficiency and increase the number of messages that could be sent, which was important for real-time GPS corrections. The new standard also greatly increased the number of possible message types. As part of the standards process, the naming of the standard was changed, and version 3.1 became RTCM Standard 10403.1. As of 20 May 2021 [update] , the latest version is 3.3, or 10403.3, with Amendments 1 and 2.
RTCM SC-104 is not the only standard for DGPS; Trimble introduced the Compact Measurement Record (CMRx) format for the same basic purpose and there are several other similar standards used for special purposes. Most of these have fallen into disuse with the introduction of 10403.1.
The original SC-104 work was published as a preliminary standard in 1985, but never widely adopted. It was replaced by Version 2, which is very similar. [1]
RTCM Version 2 was released in January 1990 and last updated to 2.3 released in August 2001. [1]
RTCM Version 2 is based on a set of fixed-length 30-bit "words" which are strung together into longer messages known as "frames". All words end with a 6-bit "parity" code using the same algorithm as the GPS signals, based on Hamming codes. This leaves 24 bits available for data. The format was deliberately modelled on that of the actual GPS messages, in order to maintain familiarity. Data within the 24-bit payload is extracted into individual data and then encoded for local transmission as strings of 6-bits of data with a leading 1 start bit and trailing 0 stop bit to form a single 8-bit value suitable for use on ASCII-based serial links and similar. The data is encoded in most significant bit format, as opposed to ASCII's LSB, so some decoding is required to return it to its original format after reception. [2]
All of the frames start with a standard two-word header. The first word starts with a magic number, the 8-bit "preamble" which always contains 01100110. The next six bits encode the message type, 0 to 64. This is followed by a 10-bit station ID. The second header word begins with a 13-bit version of the z-count, the unit of time in GPS, a 3-bit sequence number to ensure frames can be sorted if they arrive out-of-order, a five-bit length that counts the total number of words in the frame, including the header, and a three-bit "station health" code, where 111 indicates the station is not working properly. [3]
A total of 64 message types were allowed, although a number of these were deliberately left unused for future expansion, or formats that were rarely used and later abandoned. The original standard includes six message formats, 1 for correction data, 2 for updating previous corrections, 3 that provided the location of the measuring station, 6 as a null message to fill unused slots, 16 which included an arbitrary 90 ASCII characters for sending test messages, and 59, for proprietary messages used by the equipment vendors. [3]
Type 1 was a complete DPGS correction set that would be broadcast by a ground station for all of the satellites in its view. The data for a single satellite's correction required 40-bits, so to efficiently encode the data into 24 bits of payload, the corrections for three satellites were folded into five words. A single satellite's correction started with the 1-bit "scale factor" (S) and 2-bit "user differential range error" (UDRE), then the satellite's 5-bit identifier. The correction itself was in two parts, the 16-bit "pseudorange correction" (PRC) and 8-bit "range-rate correction" (RRC), and finally an 8-bit "issue of data" number. [3]
This tended to make Type 1 messages fairly long, for instance; a frame for a station with five visible satellites uses eleven 30-bit words, leaving 16 bits empty at the end of the last word. These bits are filled with alternating 1's and 0's to avoid confusion with the preamble. Shorter messages are the purpose of message Type 2, which is used to send periodic updates to existing corrections in a more compact form. Type 3 is used to periodically send out the location of the ground station, allowing receivers to pick suitable sites. [3]
In 1992 the group met to consider input from users working with phase-comparison GPS (RTK) that produces accuracy on the order of 1 centimetre (0.39 in). New message types were suggested and standardized as version 2.1 in 1994, including types 18 and 19 for raw pseudo-range measurements, or 20 and 21 as corrections. A new Type 9 provided an alternative to Type 1 and 2 and became one of the most widely used formats. Version 2.2 of 1997 added Types 31 through 37 for GLONASS support, with Type 31 and 32 being the equivalent of Type 1 and 2 for GPS. The final update, 2001's 2.3, added more messages like antenna ID and description in Type 23, its height in Type 24, and several other fields for use with Loran-C and radio beacons. [3]
As a consequence of its fixed-width packets and significant error-correction overhead, version 2 was not particularly efficient. While this was not a problem for most DGPS uses, it made it a poor choice for RTK which has a relatively high message load. For this reason, Trimble introduced its own Compact Measurement Record (CMR) format in 1996, and an updated CMR+ the next year. [4] Additionally, a number of features of the packet format, notably the way the parity system relied on the words arriving in order, made it unsuited to some distribution systems, notably the internet, and the introduction of new systems like Galileo and BeiDou meant the format was running out of possible message formats. [3]
RTCM Version 3, initially released in February 2004, [5] is the current and continually evolving version of the RTCM standard. In contrast to 2.3, version 3.x uses a variable-length message format and a single 24-bit cyclic redundancy check (CRC) on the entire message as opposed to a 6-bit parity for every 30-bit word. Like the earlier versions, the message format begins with a preamble extended to 8-bits, followed by a 6-bit reserved area, and then a 10-bit message length that allows up to 1,024 bytes of data. The message, each one with its own privately defined header and data, follows the header and is then capped with the CRC. The savings in data, especially in the case of RTK, is significant, a version 3 RTK correction set is generally half as long as version 2. [6]
Additionally, version 3 groups messages together with related data instead of sending separate messages to accomplish the same task. For instance, in version 2, sending a complete RTK message required message Type 18 for corrections and 19 for pseudo-range measurements, whereas in version 3 this information is combined in the single Type 1003. Multiple message types are defined for the same types of information to further improve efficiency; Type 1001 has GPS data only on the L1 frequency, while 1002 adds various additional information, while 1003 and 1004 do the same with both L1 and L2 data for those stations that can take advantage of the second carrier. [7]
The original 3.0 release defined 13 message types, 1001 through 1013. 1002 contained details for L1 GPS measurements, while 1004 was both L1 and L2. 1010 and 1012 were the equivalents for GLONASS. 1013 contained various system details, including the GPS week number. 1005, 1006 and 1007 contain details about the station, with 1007 adding the antenna height. Positional messages, either 1002 or 1004 and 1010 or 1012, are sent from any particular station about once a second. Station details are on the order of 20 to 30 seconds. [8]
The set was soon expanded to include 1019 containing the GPS ephemeris, which provides orbit updates and can be used to more rapidly lock-on to GPS signals. 1020 is the equivalent GLONASS ephemeris. These tend to be rare, as the same information is also periodically sent by the satellites themselves. Much later additions added ephemerides for Galileo F (1045) and I (1046), QZSS (1044) and BeiDou (1042). [8] Another major addition to the system are the State Space Representation (SSR) which are used to periodically update information on the satellites, and the Multiple Signal Messages (MSM) which allow data from different sets of satellites to be combined using a single data format. [8] [9] MSM also allows basic receivers to add Doppler corrections, which is mostly used to remove ambiguity when using L1 signals by moving receivers. [8]
The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radionavigation system owned by the United States government and operated by the United States Space Force. It is one of the global navigation satellite systems (GNSS) that provides geolocation and time information to a GPS receiver anywhere on or near the Earth where there is an unobstructed line of sight to four or more GPS satellites. It does not require the user to transmit any data, and operates independently of any telephonic or Internet reception, though these technologies can enhance the usefulness of the GPS positioning information. It provides critical positioning capabilities to military, civil, and commercial users around the world. Although the United States government created, controls and maintains the GPS system, it is freely accessible to anyone with a GPS receiver.
GLONASS is a Russian satellite navigation system operating as part of a radionavigation-satellite service. It provides an alternative to Global Positioning System (GPS) and is the second navigational system in operation with global coverage and of comparable precision.
NMEA 0183 is a combined electrical and data specification for communication between marine electronics such as echo sounder, sonars, anemometer, gyrocompass, autopilot, GPS receivers and many other types of instruments. It has been defined and is controlled by the National Marine Electronics Association (NMEA). It replaces the earlier NMEA 0180 and NMEA 0182 standards. In leisure marine applications it is slowly being phased out in favor of the newer NMEA 2000 standard, though NMEA 0183 remains the norm in commercial shipping.
The Wide Area Augmentation System (WAAS) is an air navigation aid developed by the Federal Aviation Administration to augment the Global Positioning System (GPS), with the goal of improving its accuracy, integrity, and availability. Essentially, WAAS is intended to enable aircraft to rely on GPS for all phases of flight, including precision approaches to any airport within its coverage area. It may be further enhanced with the Local Area Augmentation System (LAAS) also known by the preferred ICAO term Ground-Based Augmentation System (GBAS) in critical areas.
Satellite geodesy is geodesy by means of artificial satellites—the measurement of the form and dimensions of Earth, the location of objects on its surface and the figure of the Earth's gravity field by means of artificial satellite techniques. It belongs to the broader field of space geodesy. Traditional astronomical geodesy is not commonly considered a part of satellite geodesy, although there is considerable overlap between the techniques.
A satellite navigation or satnav system is a system that uses satellites to provide autonomous geo-spatial positioning. It allows satellite navigation devices to determine their location to high precision using time signals transmitted along a line of sight by radio from satellites. The system can be used for providing position, navigation or for tracking the position of something fitted with a receiver. The signals also allow the electronic receiver to calculate the current local time to a high precision, which allows time synchronisation. These uses are collectively known as Positioning, Navigation and Timing (PNT). One set of critical vulnerabilities in satellite communications are the signals that govern positioning, navigation and timing (PNT). Failure to properly secure these transmissions could not only disrupt satellite networks but wreak havoc on a host of dependent systems as well. Satnav systems operate independently of any telephonic or internet reception, though these technologies can enhance the usefulness of the positioning information generated.
The automatic identification system (AIS) is an automatic tracking system that uses transceivers on ships and is used by vessel traffic services (VTS). When satellites are used to receive AIS signatures, the term Satellite-AIS (S-AIS) is used. AIS information supplements marine radar, which continues to be the primary method of collision avoidance for water transport. Although technically and operationally distinct, the ADS-B system is analogous to AIS and performs a similar function for aircraft.
Differential Global Positioning Systems (DGPSs) supplement and enhance the positional data available from global navigation satellite systems (GNSSs). A DGPS for GPS can increase accuracy by about a thousandfold, from approximately 15 metres (49 ft) to 1–3 centimetres.
Real-time kinematic positioning (RTK) is the application of surveying to correct for common errors in current satellite navigation (GNSS) systems. It uses measurements of the phase of the signal's carrier wave in addition to the information content of the signal and relies on a single reference station or interpolated virtual station to provide real-time corrections, providing up to centimetre-level accuracy. With reference to GPS in particular, the system is commonly referred to as carrier-phase enhancement, or CPGPS. It has applications in land survey, hydrographic survey, and in unmanned aerial vehicle navigation.
The local-area augmentation system (LAAS) is an all-weather aircraft landing system based on real-time differential correction of the GPS signal. Local reference receivers located around the airport send data to a central location at the airport. This data is used to formulate a correction message, which is then transmitted to users via a VHF Data Link. A receiver on an aircraft uses this information to correct GPS signals, which then provides a standard ILS-style display to use while flying a precision approach. The FAA has stopped using the term LAAS and has transitioned to the International Civil Aviation Organization (ICAO) terminology of Ground-Based Augmentation System (GBAS). While the FAA has indefinitely delayed plans for federal GBAS acquisition, the system can be purchased by airports and installed as a Non-Federal navigation aid.
StarFire is a wide-area differential GPS developed by John Deere's NavCom and precision farming groups. StarFire broadcasts additional "correction information" over satellite L-band frequencies around the world, allowing a StarFire-equipped receiver to produce position measurements accurate to well under one meter, with typical accuracy over a 24-hour period being under 4.5 cm. StarFire is similar to the FAA's differential GPS Wide Area Augmentation System (WAAS), but considerably more accurate due to a number of techniques that improve its receiver-end processing.
GPS·C, short for GPS Correction, was a Differential GPS data source for most of Canada maintained by the Canadian Active Control System, part of Natural Resources Canada. When used with an appropriate receiver, GPS·C improved real-time accuracy to about 1–2 meters, from a nominal 15 m accuracy.
Augmentation of a global navigation satellite system (GNSS) is a method of improving the navigation system's attributes, such as precision, reliability, and availability, through the integration of external information into the calculation process. There are many such systems in place, and they are generally named or described based on how the GNSS sensor receives the external information. Some systems transmit additional information about sources of error, others provide direct measurements of how much the signal was off in the past, while a third group provides additional vehicle information to be integrated in the calculation process.
GPS signals are broadcast by Global Positioning System satellites to enable satellite navigation. Receivers on or near the Earth's surface can determine location, time, and velocity using this information. The GPS satellite constellation is operated by the 2nd Space Operations Squadron (2SOPS) of Space Delta 8, United States Space Force.
The Singapore Satellite Positioning Reference Network (SiReNT), is an infrastructure network launched by the Survey Services section of the Singapore Land Authority in 2006. Its purpose is to define Singapore's official spatial reference framework and to support the cadastral system in SVY21. It is a multi-purpose high precision positioning infrastructure which provides both Post Process Differential Global Positioning System (DGPS) DGPS services and Real Time DGPS services. The system supports all types of GPS positioning modes and formats.
In the field of geodesy, Receiver Independent Exchange Format (RINEX) is a data interchange format for raw satellite navigation system data. This allows the user to post-process the received data to produce a more accurate result — usually with other data unknown to the original receiver, such as better models of the atmospheric conditions at time of measurement.
GPS when applied in the earthmoving industry can be a viable asset to contractors and increase the overall efficiency of the job. Since GPS satellite positioning information is free to the public, it allows for everyone to take advantage of its uses. Heavy equipment manufacturers in conjunction with GPS guidance system manufacturers have been co-developing GPS guidance systems for heavy equipment since the late 1990s. These systems allow the equipment operator to use GPS position data to make decisions based on actual grade and design features. Some heavy equipment guidance systems can even operate the machine's implements automatically from a set design that was created for the particular jobsite. GPS guidance systems can have tolerances as small as two to three centimeters making them extremely accurate compared to relying on the operator's skill level. Since the machine's GPS system has the ability to know when it is off the design grade, this can reduce surveying and material costs required for a specific job.
The error analysis for the Global Positioning System is important for understanding how GPS works, and for knowing what magnitude of error should be expected. The GPS makes corrections for receiver clock errors and other effects but there are still residual errors which are not corrected. GPS receiver position is computed based on data received from the satellites. Errors depend on geometric dilution of precision and the sources listed in the table below.
Precise Point Positioning (PPP) is a global navigation satellite system (GNSS) positioning method that calculates very precise positions, with errors as small as a few centimeters under good conditions. PPP is a combination of several relatively sophisticated GNSS position refinement techniques that can be used with near-consumer-grade hardware to yield near-survey-grade results. PPP uses a single GNSS receiver, unlike standard RTK methods, which use a temporarily fixed base receiver in the field as well as a relatively nearby mobile receiver. PPP methods overlap somewhat with DGNSS positioning methods, which use permanent reference stations to quantify systemic errors.
The Networked Transport of RTCM via Internet Protocol (NTRIP) is a protocol for streaming differential GPS (DGPS) corrections over the Internet for real-time kinematic positioning. NTRIP is a generic, stateless protocol based on the Hypertext Transfer Protocol HTTP/1.1 and is enhanced for GNSS data streams.