RX J1131-1231

Last updated
RX J1131-1231
RX J1131.jpg
Combination image of quasar RX J1131 (center) taken via NASA’s Chandra X-ray Observatory and the Hubble Space Telescope.
Observation data (Epoch J2000)
Constellation Crater [1]
Right ascension 11h 31m 51.60s [1]
Declination −12° 31 57.00
Redshift 0.658 [1]
Distance 6.05 Gly [1]
Notable featuresrotation is half the speed of light, extragalactic planets
Other designations
QSO J1131-1231, 2MASX J11315154-1231587
See also: Quasar, List of quasars

RX J1131-1231 is a distant, supermassive-black-hole-containing quasar located about 6 billion light years from Earth in the constellation Crater. [1] [2]

Contents

In 2014, astronomers found that the X-rays being emitted are coming from a region inside the accretion disk located about three times the radius of the event horizon. This implies that the black hole must be spinning incredibly fast to allow the disk to survive at such a small radius. [1] The measurement of the black hole's rotation is the first time astronomers have been able to directly measure the rotational speed of any black hole. [3]

This determination was made by a team led by Rubens Reis of the University of Michigan using NASA's Chandra X-ray Observatory and the European Space Agency's XMM-Newton telescopes. The team observed the X-rays generated in the innermost regions of the disk circling and feeding the black hole that powers the quasar. By measuring the radius of the disk, the astronomers were able to calculate the black hole's rotational speed, which was almost half the speed of light. The rapid spin of the quasar indicates that the black hole is being fed by a vast supply of gas and dust. [3]

However, the measurements would not have been possible without a rare alignment of the quasar and a giant elliptical galaxy (which is itself part of a cluster of other galaxies in line with the quasar) which lies between Earth and RX J1131-1231. [3] This line-up provided a quadruple gravitational lens which magnified the light coming from the quasar. The strong gravitational lensing effect associated with RX J1131-1231 has also produced measured time delays; that is, in one image the lensed quaser will be observed before the other image. [4]

Extragalactic planets

A population of unbound planets between stars with masses ranging from Moon to Jupiter masses has been confirmed for the first time in the galaxy by the use of microlensing in 2018. [5]

See also

Related Research Articles

Quasar Active galactic nucleus containing a supermassive black hole

A quasar is an extremely luminous active galactic nucleus (AGN), powered by a supermassive black hole, with mass ranging from millions to tens of billions of solar masses, surrounded by a gaseous accretion disc. Gas in the disc falling towards the black hole heats up because of friction and releases energy in the form of electromagnetic radiation. The radiant energy of quasars is enormous; the most powerful quasars have luminosities thousands of times greater than a galaxy such as the Milky Way. Usually, quasars are categorized as a subclass of the more general category of AGN. The redshifts of quasars are of cosmological origin.

Gravitational lens Light bending by mass between source and observer

A gravitational lens is a distribution of matter between a distant light source and an observer, that is capable of bending the light from the source as the light travels toward the observer. This effect is known as gravitational lensing, and the amount of bending is one of the predictions of Albert Einstein's general theory of relativity. Treating light as corpuscles travelling at the speed of light, Newtonian physics also predicts the bending of light, but only half of that predicted by general relativity.

Timeline of black hole physics

Supermassive black hole Largest type of black hole; usually found at the center of galaxies

A supermassive black hole is the largest type of black hole, with its mass being on the order of millions to billions of times the mass of the Sun (M). Black holes are a class of astronomical objects that have undergone gravitational collapse, leaving behind spheroidal regions of space from which nothing can escape, not even light. Observational evidence indicates that almost every large galaxy has a supermassive black hole at the galaxy's center. For example, the Milky Way has a supermassive black hole in its Galactic Center, corresponding to Sagittarius A*. Accretion of interstellar gas onto supermassive black holes is the process responsible for powering active galactic nuclei and quasars.

Blazar Very compact quasi-stellar radio source

A blazar is an active galactic nucleus (AGN) with a relativistic jet directed very nearly towards an observer. Relativistic beaming of electromagnetic radiation from the jet makes blazars appear much brighter than they would be if the jet were pointed in a direction away from Earth. Blazars are powerful sources of emission across the electromagnetic spectrum and are observed to be sources of high-energy gamma ray photons. Blazars are highly variable sources, often undergoing rapid and dramatic fluctuations in brightness on short timescales. Some blazar jets exhibit apparent superluminal motion, another consequence of material in the jet traveling toward the observer at nearly the speed of light.

Einstein ring Feature seen when light is gravitationally lensed by an object

An Einstein ring, also known as an Einstein–Chwolson ring or Chwolson ring, is created when light from a galaxy or star passes by a massive object en route to the Earth. Due to gravitational lensing, the light is diverted, making it seem to come from different places. If source, lens, and observer are all in perfect alignment, the light appears as a ring.

An astrophysical jet is an astronomical phenomenon where outflows of ionised matter are emitted as an extended beam along the axis of rotation. When this greatly accelerated matter in the beam approaches the speed of light, astrophysical jets become relativistic jets as they show effects from special relativity.

Gravitational microlensing Astronomical phenomenon due to the gravitational lens effect

Gravitational microlensing is an astronomical phenomenon due to the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronomers can only detect bright objects that emit much light (stars) or large objects that block background light. These objects make up only a minor portion of the mass of a galaxy. Microlensing allows the study of objects that emit little or no light.

Ultraluminous X-ray source

An ultraluminous X-ray source (ULX) is an astronomical source of X-rays that is less luminous than an active galactic nucleus but is more consistently luminous than any known stellar process (over 1039 erg/s, or 1032 watts), assuming that it radiates isotropically (the same in all directions). Typically there is about one ULX per galaxy in galaxies which host them, but some galaxies contain many. The Milky Way has not been shown to contain a ULX, although SS 433 may be a possible source. The main interest in ULXs stems from their luminosity exceeding the Eddington luminosity of neutron stars and even stellar black holes. It is not known what powers ULXs; models include beamed emission of stellar mass objects, accreting intermediate-mass black holes, and super-Eddington emission.

APM 08279+5255 is a very distant, broad absorption line quasar located in the constellation Lynx. It is magnified and split into multiple images by the gravitational lensing effect of a foreground galaxy through which its light passes. It appears to be a giant elliptical galaxy with a supermassive black hole and associated accretion disk. It possesses large regions of hot dust and molecular gas, as well as regions with starburst activity.

RX J0806.3+1527 Binary star in the constellation Cancer

RX J0806.3+1527 or HM Cancri (sometimes shortened to HM Cnc or J0806 after establishing identity) is an X-ray binary star system about 1,600 light-years (490 pc; 1.5×1016 km) away. It comprises two dense white dwarfs orbiting each other once every 321.5 seconds (in this system the "year" duration is of only 5.4 minutes), at an estimated distance of only 80,000 kilometres (50,000 mi) apart (about 1/5 the distance between the Earth and the Moon). The two stars orbit each other at speeds in excess of 400 kilometres per second (890,000 mph). The stars are estimated to be about half as massive as the Sun. Like typical white dwarfs, they are extremely dense, being composed of degenerate matter, and so have radii on the order of the Earth's radius. Astronomers believe that the two stars will eventually merge, based on data from many X-ray satellites, such as Chandra X-Ray Observatory, XMM-Newton and the Swift Gamma-Ray Burst Mission. These data show that the orbital period of the two stars is steadily decreasing at a rate of 1.2 milliseconds per year as they thus are getting closer by approximately 60 centimetres (2.0 ft) per day. At this rate, they can be expected to merge in approximately 340,000 years. With a revolution period of 5.4 minutes, RX J0806.3+1527 is the shortest orbital period binary system currently known.

The Cloverleaf quasar is a bright, gravitationally lensed quasar.

An extragalactic planet, also known as an extragalactic exoplanet or an extroplanet, is a star-bound planet or rogue planet located outside of the Milky Way Galaxy. Due to the huge distances to such worlds, they would be very hard to detect directly. However, indirect evidence suggests that such planets exist. Nonetheless, the most distant known planets are SWEEPS-11 and SWEEPS-04, located in Sagittarius, approximately 27,710 light-years from the Sun, while the Milky Way is between 100,000 and 180,000 light years in diameter. This means that even galactic planets located farther than that distance have not been detected.

Accretion disk Structure formed by diffuse material in orbital motion around a massive central body

An accretion disk is a structure formed by diffuse material in orbital motion around a massive central body. The central body is typically a star. Friction, uneven irradiance, magnetohydrodynamic effects, and other forces induce instabilities causing orbiting material in the disk to spiral inward towards the central body. Gravitational and frictional forces compress and raise the temperature of the material, causing the emission of electromagnetic radiation. The frequency range of that radiation depends on the central object's mass. Accretion disks of young stars and protostars radiate in the infrared; those around neutron stars and black holes in the X-ray part of the spectrum. The study of oscillation modes in accretion disks is referred to as diskoseismology.

PA-99-N2 is a microlensing event detected in the direction of the Andromeda Galaxy in 1999.

Georges Meylan Swiss astronomer

Georges Meylan is a Swiss astronomer, born on July 31, 1950 in Lausanne, Switzerland. He was the first director of the Laboratory of Astrophysics of the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland, and now a professor emeritus of astrophysics and cosmology at EPFL. He is still active in both research and teaching.

MACS J1149 Lensed Star 1 Blue supergiant and most distant star from earth detected in the constellation Leo

MACS J1149 Lensed Star 1, also known as Icarus, is a blue supergiant star observed through a gravitational lens. It is the most distant individual star to have been detected so far, at approximately 14 billion light-years from Earth. Light from the star was emitted 4.4 billion years after the Big Bang. According to co-discoverer Patrick Kelly, the star is at least a hundred times more distant than the next-farthest non-supernova star observed, SDSS J1229+1122, and is the first magnified individual star seen.

References

  1. 1 2 3 4 5 6 "Chandra & XMM-Newton Provide Direct Measurement of Distant Black Hole's Spin". Chandra X-ray Center. March 5, 2014. Retrieved March 5, 2014.
  2. "Distant Quasar RX J1131". NASA. March 5, 2014. Retrieved March 5, 2014.
  3. 1 2 3 Nola Taylor Redd (March 5, 2014). "Monster Black Hole Spins at Half the Speed of Light". Space.com . Retrieved March 5, 2014.
  4. Morgan, Nicholas; Kochanek, Christopher (May 2006). "Time-Delay Measurement for the Quadruple Lens RX J1131-1231". arXiv: astro-ph/0605321 .
  5. Dai, Xinyu; Guerras, Eduardo (2018). "Probing Planets in Extragalactic Galaxies Using Quasar Microlensing". The Astrophysical Journal. 853 (2): L27. arXiv: 1802.00049 . Bibcode:2018ApJ...853L..27D. doi:10.3847/2041-8213/aaa5fb. S2CID   119078402.